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1. INTRODUCCIÓN A LA EVALUACIÓN DE SOFTWARE 

1.1 ¿ESTAMOS CONSTRUYENDO SOFTWARE SIN 
DEFECTOS?: ESTADO ACTUAL DE LA PRÁCTICA 

Todos, alguna vez, hemos sufrido algún error informático, ya sea una factura indebidamente cargada o 
la destrucción del trabajo de todo un día, por culpa de un fallo misterioso en el software. Tales 
problemas nacen de la complejidad del software. La extrema dificultad para construir sistemas 
software multiplica la probabilidad de que persistan errores aún después de haberse finalizado y 
entregado el sistema, manifestándose cuando éste es utilizado por el cliente. 

La construcción de un sistema software tiene como objetivo satisfacer una necesidad planteada por un 
cliente. ¿Cómo puede saberse si el producto construido se corresponde exactamente con lo que el 
cliente deseaba? y ¿Cómo se puede estar seguro de que el producto que ha construido va a funcionar 
correctamente? 

Desgraciadamente, nuestra capacidad para medir la fiabilidad del software es muy inferior a lo que 
sería necesario1. Sería deseable que los informáticos pudieran demostrar matemáticamente la 
corrección de sus programas, al estilo de los otros ingenieros. Los otros ingenieros recurren a análisis 
matemáticos para predecir cuál será el comportamiento de sus creaciones en el mundo real. Esa 
predicción permite descubrir defectos antes de que el producto esté operativo. Por desdicha, las 
matemáticas tradicionales, aptas para la descripción de sistemas físicos (los tipos de sistemas tratados 
por las otras ingenierías), no son aplicables al universo sintético binario de un programa de ordenador. 
Es la matemática discreta, una especialidad mucho menos madura, y casi no estudiada hasta la 
aparición de las computadoras, la que gobierna el campo de los sistemas software. 

Dada la imposibilidad de aplicar métodos matemáticos rigurosos, el modo que tienen los informáticos 
para respaldar la confianza de los programas es la verificación empírica. La fiabilidad de los 
programas irá creciendo a lo largo de este proceso. Se hacen funcionar los programas, observando 
directamente su comportamiento y depurándolos cada vez que aparece una deficiencia una vez el 
sistema a construir ha sido terminado. Sin embargo, este modo de actuar no proporciona una solución 
definitiva debida, principalmente, a dos razones: 

1. Si descubrimos en el código errores muy graves que afectan a productos anteriores (requisitos, 
diseño,…) debemos volver atrás en el desarrollo. Sin embargo, estamos ya al final del 
proyecto (en la etapa de codificación), ya se ha gastado casi la totalidad del tiempo y del 
presupuesto. ¿Qué hacer? ¿Entregamos tarde el sistema y repetimos el desarrollo? ¿Le 
pedimos al cliente un aumento del presupuesto? 

2.  Por otra parte, la comprobación que empírica no sirve para garantizar que no hay errores en el 
software, puesto que ello depende, por un lado, de la porción del programa que se esté 
ejecutando en el momento de esta comprobación, y por otro, de las entradas que se le hayan 
proporcionado al código. Por lo tanto, pueden existir errores en otras partes del programa que 
no se ejecuten en ese momento o con otras entradas que no se hayan usado en la prueba. 

Por lo tanto, lo recomendable es que producto software vaya siendo evaluado a medida que se va 
construyendo. Como veremos posteriormente, se hace necesario llevar cabo, en paralelo al proceso de 
desarrollo, un proceso de evaluación o comprobación de los distintos productos o modelos que se van 
generando, en el que participarán desarrolladores y clientes. 

                                                     
1 W. Wayt Gibbs. Software’s Chronic Crisis. Scientific American. Number 218. November 1994. 
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No obstante, la calidad que se puede obtener mediante este procedimiento artesanal es bastante baja. 
De ahí que, a pesar de haber sido ensayados rigurosa y sistemáticamente, la mayoría de los programas 
grandes contengan todavía defectos cuando son entregados. Ello se debe a la complejidad del 
software. Un programa de apenas unos centenares de líneas de código puede contener decenas de 
decisiones, lo que permite millares de rutas de ejecución alternativas, resultando materialmente 
imposible el ensayo exhaustivo de todas las posibles rutas alternativas. Para alcanzar una confianza de 
no más de 10-9 fallos por hora tendría que ejecutarse un programa durante muchísimos múltiplos de 
109 horas, esto es, durante muchos múltiplos de 100.000 años2.

Así pues, la ambición de conseguir programas perfectos sigue siendo una cima inaccesible. Existe, hoy 
por hoy, la imposibilidad práctica de conseguir software totalmente libre de defectos2 y, debemos, por 
tanto, aceptar las actuales limitaciones que padece la construcción de sistemas software. De hecho, 
algunos autores3 sugieren que, dada la entidad no física del software, los defectos en los programas 
son inherentes a su naturaleza. 

Es difícil establecer cuál es la cantidad media de defectos que un sistema software “normal” contiene. 
Hay estimaciones, como la del Software Engineering Institute4, que dicen que un programador experto
introduce un defecto por cada 10 líneas de código;  suponiendo que se detectasen el 99% de los 
defectos introducidos (lo cual resulta tremendamente optimista) aún permanecerían 1 defecto por cada 
1.000 líneas de código (KLOC5).

No obstante, la depuración de los sistemas software obedece a la ley del rendimiento decreciente. Esto 
es, según se avanza en el proceso de búsqueda de defectos, el coste de detección de fallos y 
eliminación de las faltas que los provocan empieza a rebasar con mucho las mejoras conseguidas en la 
fiabilidad del sistema. Nótese que la fiabilidad de un software no se mide como la cantidad de faltas 
que quedan en un programa, sino como el tiempo medio entre fallos6. Así pues, el objetivo de las 
técnicas de evaluación del software no es tanto la eliminación total de las faltas existentes en los 
programas, como la eliminación de las faltas que provocan fallos frecuentes. Si se persevera durante 
muchísimo tiempo en la depuración de un software, acabamos descubriendo faltas que producirán 
fallos tan infrecuentes que su enmienda no incide en la fiabilidad percibida del sistema.  

De hecho, hasta el software más depurado y considerado de alta fiabilidad contiene defectos 
remanentes. Edward N. Adams de IBM analizó empíricamente7 los “tamaños” de las faltas en una base 
de datos de cobertura mundial que suponía el equivalente de miles de años de uso de un sistema 
informático particular. El descubrimiento más extraordinario consistió en que alrededor de la tercera 
parte de las faltas contenidas en un programa son quinquemilenarias. Esto es, faltas que producirían un 
fallo tan sólo una vez cada 5.000 años. Estas faltas excepcionales sumaban una porción considerable 
del total de faltas remanentes, pues las faltas responsables de de fallos más frecuentes habían sido 
descubiertas y consiguientemente eliminadas durante la fase de evaluación y en los primeros meses de 
operación del sistema. Obviamente, emplear tiempo en detectar faltas que producen fallos cada más 
allá de 75 años es malgastar recursos.  

                                                     
2 Bev Littlewood and Lorenzo Strigini. The Risks of Software. Scientific American. Volume 268, Number 1, 

January, 1993 
3 Y. Huang, P. Jalote and C. Kintala. Two Techniques for Transient Software Error Recovery. Lecture Notes in 

Computer Science, Vol. 774, pages 159-170. Springer Verlag, Berlin, 1994. 
4 Software Engineering Institute. Information Week, Jan. 21, 2002 
5 KLOC es el acrónimo inglés de Kilo Lines Of Code, esto es, 1.000 líneas de código. 
6 Una falta en el código es la causante de un fallo en el funcionamiento del sistema. Los fallos se perciben como 

errores por los usuarios del sistema. Las faltas, mientras no se manifiestan como fallo durante el 
funcionamiento del sistema, no pueden ser apreciadas por los usuarios. El término defecto se utiliza cuando no 
es necesario la exactitud de diferencias entre falta y fallo.  

7 E. Adams. Optimizing Preventive Service of Software Products. IBM Research J., vol. 28, no. 1, pages. 2-14, 
1984. 
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Si hablamos de valores reales, en lugar de estimaciones, unos buenos ejemplos de cuántos fallos son 
“normales” en un software pueden serlo los sistemas operativos. La tasa de defectos de Linux es 0,1 
defectos/KLOC8. Las distintas versiones de Unix tienen entorno a 0,6-0,7 defectos/KLOC4. Los 
sistemas operativos con interfaz gráfico como Windows 95 o MacOS poseían una tasa de 
defectos/KLOC tan elevada que fallaban cada tres horas, o incluso menos, de funcionamiento 
ininterrumpido9. Otro ejemplo, Siemens sufrió una tasa de 6-15 defectos /KLOC en el desarrollo de 
alguno de sus sistemas operativos10.

Fuera del ámbito de los sistemas operativos existen pocas, aunque elocuentes, referencias a las tasas 
de defectos del software. Así, Unisys alcanzó una tasa de 2-9 defectos/KLOC en el desarrollo de 
software de comunicaciones. IBM, en el desarrollo normal de software, puede llegar a sufrir una tasa 
de 30 defectos/KLOC. Como se ve la variabilidad entre unos casos y otros es muy alta, lo que impide 
sacar reglas sobre qué es “normal” 

Incluso utilizado técnicas muy avanzadas (las que se usan en sistemas de alto riesgo como la conocida 
Cleanroom Development11) es imposible lograr un software totalmente libre de defectos. Así, por 
ejemplo, la misma IBM no consiguió rebajar su tasa de defectos de 2,3-3,4 defectos/KLOC utilizando 
la técnica Cleanroom12.

La UK Civil Aviation obtuvo una tasa de defectos de 0,81 / KLOC en el desarrollo del sistema de 
control de tráfico aéreo del Reino Unido. Nótese que, en este caso, la necesidad de fiabilidad y 
robustez del sistema es enorme y, sin embargo, casi se alcanzó 1 defecto/KLOC, lo que parece indicar 
que 1 puede considerarse el límite inferior de la tasa de defectos alcanzable. Sin embargo, en otros 
casos de sistemas software también críticos y que requieren programas especialmente fiables, se ha 
superado con creces este límite. Así, según los datos publicados hasta la fecha, la NASA13 ha sufrido 
tasas de defectos en el rango 4-12 defectos /KLOC. 

Cabe preguntarse, en consecuencia, qué tasa de defectos debe considerarse normal en un proyecto de 
desarrollo. Existen autores que afirman que es habitual encontrar en el software comercial entre 25-30 
defectos/KLOC14. No obstante, aplicando una visión exigente tenemos que: 

Lo mejor que se puede conseguir es 0,5-1 defectos/KLOC 

En un software comercial, es esperable encontrar entre 3-6 defectos/KLOC 

                                                     
8 Stephen Shankland CNET News.com February 19, 2003 
9 L. Hatton. Keynote presentation, COMPASS’97, 16-19 June, 1997. http://guinness.cs.stevens-

tech.edu/~lbernste/presentations/Defects_ala_Hatton.ppt 
10 L. Hatton. Programming Languages and Safety-Related Systems. Proc. Safety-Critical Systems Symp.,

Springer-Verlag, New York, 1995, pp. 48-64, citado en S. L. Pfleeger and L. Hatton. Investigating the 
Influence of Formal Methods. IEEE Computer, Volume 30, Issue 2 (February 1997), pp. 33-43. 

11 R. C. Linger. Cleanroom Process Model. IEEE Software, Volume 11, issue 2 (March 1994), pp 50-58. 
12 Cleanroom Development es una de las más depuradas, avanzadas y contrastada para desarrollar sistemas 

software con baja tasa de defectos. La razón de su no amplia utilización es su altísimo coste, que hace 
dispararse los costos de los proyectos. Así pues, únicamente se aplica cuando el cliente lo exige y acepta el 
aumento que produce en el precio del desarrollo. 

13 La NASA es considerado uno de los centros de desarrollo de software más avanzado a nivel mundial. Durante 
años sus investigaciones en el Software Engineering Laboratory, en Maryland EE.UU,  han marcado 
tendencias en la construcción de software. La razón para esto es clara: los fallos en los vehículos de la NASA 
son irreversibles, pues no hay opción para que  un desarrollador se acerque al sistema y resuelva el problema. 
En otras palabras, no puede permitirse el lujo de tener fallos. 

14 M. Dyer. The Cleanroom Approach to Software Quality. John Wiley & Sons, New York, 1992. 
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Puede considerarse que un software posee alta calidad cuando su tasa de defectos es menor de 
15 defectos/KLOC. 

1.2 CONTROL DE CALIDAD DEL SOFTWARE 

El interés por la calidad crece de forma continua, a medida que los clientes se vuelven más selectivos 
y comienzan a rechazar los productos poco fiables o que realmente no dan respuesta a sus necesidades. 

Como primera aproximación es importante diferenciar entre la calidad del PRODUCTO software y la 
calidad del PROCESO de desarrollo. Las metas que se establezcan para la calidad del producto van a 
determinar las metas a establecer para la calidad del proceso de desarrollo, ya que la calidad del 
producto va a estar en función de la calidad del proceso de desarrollo. Sin un buen proceso de 
desarrollo es casi imposible obtener un buen producto. 

También es importante destacar que la calidad de un producto software debe ser considerada en todos 
sus estados de evolución a medida que avanza el desarrollo de acuerdo al ciclo de vida seleccionado 
para su construcción (especificaciones, diseño, código, etc.). No basta con tener en cuenta la calidad 
del producto una vez finalizado, cuando los problemas de mala calidad ya no tienen solución o la 
solución es muy costosa. 

Los principales problemas a los que se enfrenta el desarrollo de software a la hora de tratar la calidad 
de un producto software son la definición de calidad y su comprobación: 

Con respecto a la definición de la calidad del software: ¿Es realmente posible encontrar un conjunto de 
propiedades en un producto software que nos den una indicación de su calidad? Para dar respuesta a 
estas preguntas aparecen los Modelos de Calidad. En los Modelos de Calidad, la misma se define de 
forma jerárquica. Resuelven la complejidad mediante la descomposición. La calidad es un concepto 
que se deriva de un conjunto de sub-conceptos. 

En el caso de la calidad del software, el término es difícil de definir. Con el fin de concretizar a qué 
nos referimos con calidad de un sistema software, se subdivide en atributos: 

Funcionalidad – Habilidad del software para realizar el trabajo deseado. 

Fiabilidad – Habilidad del software para mantenerse operativo (funcionando). 

Eficiencia – Habilidad del software para responder a una petición de usuario con la 
velocidad apropiada. 

Usabilidad – Habilidad del software para satisfacer al usuario. 

Mantenibilidad – Habilidad del software para poder realizar cambios en él fácilmente y 
con una adecuada proporción cambio/costo. 

Portabilidad – Habilidad del software para operar en diferentes entornos informáticos. 

A su vez, cada una de estas características del software puede subdividirse en atributos aún más 
concretos. La Tabla 1 muestra una posible subdivisión. Aunque existen muchas otras 
descomposiciones de la calidad del software, ésta es una de las más aceptadas. 
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CHARACTERISTICS AND  
SUBCHARACTERISTICS

DESCRIPTION 

Functionality Characteristics relating to achievement of the basic purpose for which the software is being engineered 
Suitability The presence and appropriateness of a set of functions for specified tasks 
Accuracy The provision of right or agreed results or effects 
Interoperability Software’s ability to interact with specified systems 
Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols. 

Reliability Characteristics relating to capability of software to maintain its level of performance under stated conditions for a stated period of time 
Maturity Attributes of software that bear on the frequency of failure by faults in software 
Fault tolerance Ability to maintain a specified level of performance in cases of software faults or unexpected inputs 
Recoverabiltiy Capability and effort needed to re-establish level of performance and recover affected data after possible failure 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols 

Usability Characteristics relating to the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users 
Understandability The effort required for a user to recognize the logical concept and its applicability 
Learnability The effort required for a user to learn its application, operation, input and output 
Operability The ease of operation and control by users 
Attractiveness The capability of the software to be attractive to the user 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols 

Efficiency Characteristics related to the relationship between the level of performance of the software and the amount of resources used, under stated conditions 
Time behavior The speed of response and processing times and throughput rates in performing its function 
Resource utilization The amount of resources used and the duration of such use in performing its function 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols 

Maintainability
Characteristics related to the effort needed to make modifications, including corrections, improvements or adaptation of software to changes in 
environment, requirements and functional specifications 

Analyzability The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be modified
Changeability The effort needed for modification fault removal or for environmental change 
Stability The risk of unexpected effect of modifications 
Testability The effort needed for validating the modified software 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols 

Portability Characteristics related to the ability to transfer the software from one organization or hardware or software environment to naother 
Adaptability The opportunity for its adaptation to different specified environments 
Installability The effort needed to install the software in a specified environment 
Co-existence The capability of a software product to co-exist with other independent software in common environment 
Replaceability The opportunity and effort of using it in the place of other software in a particular environment 
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols 

Tabla 1. Descomposición de la calidad del software por ISO 9126-1998
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Independientemente de la descomposición de calidad que se elija, el nivel de propensión de faltas 
de un sistema software afecta siempre a varios de los atributos de calidad. En particular, fiabilidad y 
funcionalidad son siempre los más afectados. No obstante, no existe una relación bien establecida 
entre las faltas y la fiabilidad y funcionalidad. O dicho de otro modo, entre las faltas y los fallos. 
Todas las faltas de un producto software no se manifiestan como fallos. Las faltas se convierten en 
fallos cuando el usuario de un sistema software nota un comportamiento erróneo. Para que un 
sistema software alcance un nivel alto de calidad se requiere que el número de fallos sea bajo. Pero 
para mantener los fallos a niveles mínimos, las faltas necesariamente deben también estar en niveles 
mínimos.  

Resumiendo, la calidad es difícil de definirse. Para facilitar su comprensión la calidad se ha 
descompuesto en atributos. Controlar y corregir las faltas existentes en un producto software afecta 
positivamente algunos atributos de calidad. En particular, si se trabaja en detectar y eliminar las 
faltas y los fallos, la funcionalidad y la fiabilidad mejoran.  

En términos generales, se pueden distinguir dos tipos de evaluaciones durante el proceso de 
desarrollo: Verificaciones y Validaciones. Según el IEEE Std 729-1983 éstas se definen como: 

Verificación: Proceso de determinar si los productos de una cierta fase del desarrollo de 
software cumplen o no los requisitos establecidos durante la fase anterior. 

Validación: Proceso de evaluación del software al final del proceso de desarrollo para 
asegurar el cumplimiento de las necesidades del cliente.  

Así, la verificación ayuda a comprobar si se ha construido el producto correctamente, mientras que 
la validación ayuda a comprobar si se ha construido el producto correcto. En otras palabras, la 
verificación tiene que ver típicamente con errores en la transformación entre productos (de los 
requisitos de diseño, del diseño al código, etc.). Mientras que la validación tiene que ver con errores 
al malinterpretar las necesidades del cliente. Así la única persona que puede validar el software, ya 
sea durante su desarrollo con una vez finalizado, es el cliente, ya que será quién pueda detectar si se 
interpretaron adecuadamente. 

La calidad siempre va a depender de los requisitos o necesidades que se desee satisfacer. Por eso, la 
evaluación de la calidad de un producto siempre va a implicar una comparación entre unos 
requisitos preestablecidos y el producto realmente desarrollado. 

El problema es que, por lo general, una parte de los requisitos van a estar explícitos (se encontrarán 
en la ERS - Especificación de Requisitos Software, tanto los funcionales como otros requisitos), 
pero otra parte van a quedar implícitos (el usuario sabe lo que quiere, pero no siempre es capaz de 
expresarlo). Hay que intentar que queden implícitos la menor cantidad de requisitos posible. No se 
podrá conseguir un producto de buena calidad sin una buena ERS. 

Teniendo esto en cuenta, en un producto software vamos a tener diferentes visiones de la calidad: 

Necesaria o Requerida: La que quiere el cliente. 

Programada o Especificada: La que se ha especificado explícitamente y se intenta 
conseguir. 

Realizada: La que se ha conseguido. 
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Nuestro objetivo es conseguir que las tres visiones coincidan. A la intersección entre la calidad 
Requerida y la calidad Realizada se le llama calidad Percibida, y es la única que el cliente valora. 
Toda aquella calidad que se realiza pero no se necesita es un gasto inútil de tiempo y dinero. 

Tanto para la realización de verificaciones como de validaciones se pueden utilizar distintos tipos 
de técnicas. En general, estas técnicas se agrupan en dos categorías: 

Técnicas de Evaluación Estáticas: Buscan faltas sobre el sistema en reposo. Esto es, 
estudian los distintos modelos que componen el sistema software buscando posibles faltas 
en los mismos. Así pues, estas técnicas se pueden aplicar, tanto a requisitos como a 
modelos de análisis, diseño y código. 

Técnicas de Evaluación Dinámicas: Generan entradas al sistema con el objetivo de detectar 
fallos, cuando el sistema ejecuta dichas entradas. Los fallos se observan cuando se detectan 
incongruencias entre la salida esperada y la salida real. La aplicación de técnicas dinámicas 
es también conocida como pruebas de software o testing y se aplican generalmente sobre 
código puesto que es, hoy por hoy, el único producto ejecutable del desarrollo.  

Veamos en la siguiente sección cómo estas técnicas de evaluación han de aplicarse durante todo el 
proceso de desarrollo. Pero antes recordemos que todo proceso de evaluación además de la posible 
detección de defectos conlleva  un proceso de depuración, esto es la corrección de los mismos. 
Ambas tareas (detección y corrección) pueden realizarse por una misma persona o por personas 
distintas según la organización y el modelo de desarrollo sobre el que se esté aplicando la técnica. 
Las técnicas de evaluación, tanto las estáticas como las dinámicas, no aportan ayuda en la 
corrección de los defectos encontrados. 

Bien es cierto, que en el caso de las técnicas estáticas, dado que detectan faltas su corrección es más 
directa. Mientras que las técnicas dinámicas, como se centran en los fallos su proceso de depuración 
asociado es mucho más complejo, puesto que se debe, primero, buscar la falta que provoca el fallo 
(lo cual, no es en absoluto inmediato como sabe cualquier programador) y posteriormente 
corregirlo.
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2. EVALUACIÓN DE SOFTWARE Y PROCESO DE 
DESARROLLO 

Tal como se ha indicado anteriormente, es necesario evaluar el sistema software a medida que se va 
avanzando en el proceso de desarrollo de dicho sistema. De esta forma se intenta que la detección 
de defectos se haga lo antes posible y tenga menor impacto en el tiempo y esfuerzo de desarrollo. 
Ahora bien ¿cómo se realiza esta evaluación? 

Las técnicas de evaluación estática se aplican en el mismo orden en que se van generando los 
distintos productos del desarrollo siguiendo una filosofía top-down. Esto es, la evaluación estática 
acompaña a las actividades de desarrollo, a diferencia de la evaluación dinámica que únicamente 
puede dar comienzo cuando finaliza la actividad de codificación, siguiendo así una estrategia 
botom-up. La evaluación estática es el único modo disponible de evaluación de artefactos para las 
primeras fases del proceso de desarrollo (análisis y diseño), cuando no existe código. Esta idea se 
muestra en la Figura 1 en la que como se observa la evaluación estática se realiza en el mismo 
sentido en que se van generando los productos del desarrollo de software, mientras que la dinámica 
se realiza en sentido inverso.  
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Figura 1. Abstracción de la Relación entre Evaluación y Proceso Software 

Más concretamente, la Figura 2 muestra en detalle la aplicación de las técnicas estáticas y 
dinámicas para evaluar software. La evaluación estática (conocida con el nombre genérico de 
Revisiones) se realiza en paralelo al proceso de construcción, constando de una actividad de 
evaluación emparejada con cada actividad de desarrollo. Es decir, la actividad de Definición de 
Requisitos de Usuario va acompañada de una actividad de Revisión de Requisitos de Usuario, la 
actividad de Definición de Requisitos Software va emparejada con su correspondiente actividad de 
revisión y así, sucesivamente.  

Las actividades de revisión marcan el punto de decisión para el paso a la siguiente actividad de 
desarrollo. Es decir, la actividad de requisitos interactúa con la actividad de revisión de requisitos 
en un bucle de  mejora iterativa hasta el momento en que la calidad de los requisitos permite 
abordar la subsiguiente fase de desarrollo. Lo mismo ocurre con el diseño arquitectónico: sufrirá 
una mejora iterativa hasta que su nivel de calidad permita pasar al diseño detallado y así, 
sucesivamente. Nótese que esto también ocurre en la fase de codificación. La actividad siguiente a 
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la de implementación es la fase de pruebas unitarias. No obstante, antes de pasar a ella, los 
programas deberán evaluarse estáticamente. Del mismo modo que se ha hecho con los otros 
productos. 
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Figura 2. Modelo en V de Evaluación de Software 

En otras palabras, las actividades de revisión acompañan las actividades del modelo de desarrollo 
de software que guía el proyecto. En los modelos de desarrollo de software tradicionales, las 
actividades de evaluación tanto estáticas como dinámicas tienen una inmersión clara dentro de cada 
una de las fases del proceso. Es decir, se puede diferenciar claramente donde se introducen las 
actividades de revisión pues cada fase de desarrollo está claramente diferenciada. En modelos de 
proceso de software recientes como es el caso de los Modelos de Proceso Ágiles y particularmente 
en XP, no sucede claramente de la misma manera. La necesidad de hacer liberaciones de código a 
intervalos cortos de tiempo (totalmente probadas) permite involucrar la evaluación en cada una de 
las actividades diarias que acompañan el proceso de desarrollo. Las pruebas de aceptación, por 
ejemplo son pruebas definidas por el cliente con ayuda de un miembro del equipo de desarrollo bajo 
el rol de Tester o Verificador. Estas buscan medir la funcionalidad de la característica seleccionada 
por el cliente para ser implementada en esa liberación. Las pruebas se establecen como fundamento 
del desarrollo, del control de cambios y del trabajo conjunto del cliente con el desarrollador a través 
de todo el proceso de desarrollo.  
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En general y por tanto, las actividades de evaluación estática constituyen los puntos de control o 
revisión utilizados por los gestores de proyectos y las organizaciones para evaluar tanto la calidad 
de los productos como el progreso del proyecto. Es decir, las actividades de revisión son una 
herramienta de control para el producto software.  

Una vez realizadas estas revisiones se procede con la evaluación dinámica, que como ya se ha 
indicado se realiza sobre el código. Aunque más adelante se estudiarán en detalle los distintos tipos 
de pruebas dinámicas, se puede indicar que la primera prueba a realizar es la denominada Prueba de 
Unidad en la que se buscan errores en los componentes más pequeños del programa (módulos). 
Estos errores se detectan cuando dichos componentes no actúan como se ha especificado en el 
diseño detallado.  

En el caso de XP, a consecuencia de la refactorización, es necesario correr una sesión de pruebas 
para verificar que, los cambios no han afectado el comportamiento del sistema, es decir, que no han 
introducido defectos. En la “Programación por Pares” (uno de los principios de XP), todo el código 
debe escribirse por pares de programadores. En forma conjunta, dos personas escriben código 
sentados frente a un ordenador, turnándose en el uso del ratón y el teclado. Mientras uno piensa 
desde un punto de vista más estratégico y realiza lo que podría llamarse código en tiempo real, el 
otro programador escribe directamente el código, alternándose en los roles varias veces al día. Las 
“Pruebas de Unidad” son escritas por cada par de programadores cuando se escribe el código. Las 
pruebas se ejecutan bajo un proceso de integración y construcción continua que brinda una 
plataforma estable para el desarrollo. 

Seguidamente, se prueban los distintos componentes que constituyen el software en la denominada 
Prueba de Integración. Esta prueba está orientada a detectar fallos provocados por una incorrecta 
(no acorde con la especificación de diseño de alto nivel) comunicación entre módulos. El software 
se puede ejecutar en un contexto hardware concreto, por lo que la Prueba de Sistema es la que se 
encarga de buscar errores en este ensamblaje sofware/hardware. Finalmente, el usuario ha de 
realizar la Prueba de Aceptación final sobre el sistema completo.   

Para XP, el principio de “Pruebas de Cliente”, consiste en que el cliente define una o más pruebas 
de aceptación. Estas pruebas se automatizan para mostrar que la característica que el cliente desea 
está funcionando correctamente. El equipo construye esas pruebas y las usa para probarse así 
mismos y para mostrarle al cliente que la característica ha sido implementada correctamente. La 
automatización de las pruebas es importante puesto que para XP, la liberación de código en cortos 
plazos de tiempo es indispensable. Por ello, las pruebas  estáticas al código no vendrían siendo la 
mejor opción. 

Nótese cómo la evaluación de los productos software mediante revisiones permite contar con una 
estimación temprana de la calidad con que se está llevando a cabo el desarrollo. Esto es así porque 
las revisiones encuentran faltas, pero la cantidad de faltas encontradas en un producto dan una idea 
de las faltas que aún pueden quedar así como de la calidad del trabajo de desarrollo de dicho 
producto. La experiencia parece indicar que donde hay un defecto hay otros. Es decir, la 
probabilidad de descubrir nuevos defectos en una parte del software es proporcional al número de 
defectos ya descubiertos. Es en este principio sobre el que se basan los métodos de estimación de 
los defectos que quedan en un software; ya sean los modelos de fiabilidad (que utilizan como 
entrada los fallos encontrados durante las pruebas) ya sean los métodos de estimación del contenido 
de faltas (que utilizan como entrada las faltas encontradas mediante revisiones). No obstante, es 
gracias a la evaluación estática que se puede realizar esta estimación de la calidad del software de 
manera temprana, puesto que los modelos de fiabilidad requieren el código ya desarrollado para dar 
una indicación de los posibles fallos que quedan remanentes en dicho código. 
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En XP, con el principio de “Propiedad Colectiva de Código”, un par de programadores pueden 
mejorar un código a la vez. Esto significa que, todo el código en general obtiene el beneficio de la 
atención de muchos programadores. Esto incrementa la calidad del código y disminuye los defectos.  

Así pues, la importancia de las técnicas estáticas de evaluación a la hora de controlar el nivel de 
calidad con el que se está llevando a cabo el desarrollo es crucial. Los modelos que utilizan los 
datos de las técnicas de testing, ayudan a predecir la fiabilidad del software que se está entregando 
(cuántas fallos quedan en el sistema sin encontrar), pero poco se puede hacer ya, excepto seguir 
probando el sistema hasta elevar el nivel de fiabilidad del mismo. Sin embargo, la estimación de 
faltas que aún quedan en un producto utilizando datos de las revisiones permite dos acciones que 
ayudan a prevenir futuros defectos en el proyecto: 

Seguir revisando el producto para disminuir el número de faltas remanentes. Por tanto 
esta detección temprana previene encontrar estas faltas en estadios más avanzados del 
desarrollo. Es decir, la falta que detectemos en los requisitos estaremos evitando 
contagiarla al diseño y al código. 

Tomar medidas correctivas del desarrollo si las estimaciones indican que se está 
llevando a cabo un trabajo pobre. Es decir, si las estimaciones de faltas remanentes 
indican que un determinado producto contiene más faltas de las habituales, algo se está 
haciendo mal (hay problemas en el equipo de desarrollo, algún miembro del equipo 
tiene problemas que está afectando a su trabajo,  hay problemas con las técnicas que se 
están utilizando, quizás el equipo no las conoce bien, etc.) y deben tomarse acciones 
que remedien o palien estos problemas antes de que afecten al resultad final del 
proyecto. 

En las secciones 3 y 4 se detallan las técnicas estáticas y dinámicas respectivamente. 



N.Juristo/A. Moreno Pág.15  

3. TÉCNICAS DE EVALUACIÓN ESTÁTICA 

3.1 BENEFICIOS DE LAS REVISIONES 
La razón para buscar defectos en productos tempranos es porque éstos se traducen en defectos en el 
producto final. Es decir, defectos en los requisitos se traducirán en defectos en el sistema final. 
Veamos una analogía con la arquitectura de edificios. Si en un plano el color de una línea indica su 
significado, una confusión en el color se traducirá en un error en el edificio. Por ejemplo, si el azul 
indica tuberías de agua y el amarillo cables eléctricos y el arquitecto comete un error usando el azul 
en una conducción eléctrica, los electricistas que usen el plano como guía para su trabajo no 
colocarán cables eléctricos mientras que los fontaneros colocarán tuberías de agua donde no debían 
ir. El plano de un edificio es el artefacto equivalente al diseño de un producto software. Si un diseño 
contiene defectos, seguramente estos defectos se trasmitirán al código cuando los programadores 
usen ese diseño como guía para su trabajo. 

La detección temprana de errores acarrea grandes beneficios. Si las revisiones únicamente se 
aplican al código mejoran la calidad y producen ahorros en los costos del proyecto. Pero los ahorros 
son mayores si se inspeccionan artefactos tempranos del desarrollo. Estudiando los resultados  
publicados sobre  ahorros con las revisiones, puede afirmarse que la utilización de inspecciones de 
código produce un ahorro del 39% sobre el coste de detectar y corregir defectos, frente a  
únicamente utilizar la evaluación dinámica. Sin embargo, el ahorro es del 44% si se inspecciona 
también el diseño. 

La experiencia demuestra que entre el 30% y el 70% de los defectos, de diseño y código son 
detectados por las técnicas estáticas. Esto supone un gran ahorro, pues la corrección es más fácil y 
menos costosa durante la evaluación estática que durante la dinámica. Nótese que cuando durante la 
evaluación dinámica del sistema se detecta un fallo en un programa, lo que se detecta es el fallo, no 
la falta que lo provoca. Es decir, tras la detección del fallo, se requiere una labor de localización en 
el programa de la falta que provocó el fallo. Sin embargo, con las técnicas estáticas, lo que se 
detecta son directamente faltas. Por tanto, una vez detectada, se puede pasar a la fase de corrección. 
Es decir, desaparece la tarea de localización de la falta. Esto significa, que las técnicas estáticas son 
más baratas por falta que las dinámicas. 

Las revisiones también proporcionan beneficios más generales. Entre éstos se pueden citar están: 

Evaluación del progreso del proyecto 
Potencia las capacidades de los participantes 
Mejoran la comunicación entre el equipo de desarrollo, aumentando su motivación, 
pues los productos pasan a ser documentos públicos. 
Proporciona aprendizaje, retroalimentación y prevención 
Forma y educa a los participantes 

En el caso concreto de las revisiones de código, éstas, además, permiten localizar secciones críticas, 
lo que permitirá dedicar un mayor esfuerzo a ellas en la fase de pruebas. 
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3.2 OBJETIVOS DE LA EVALUACIÓN ESTÁTICA 

La evaluación estática de los distintos artefactos o productos que se generan en el desarrollo de 
software (especificación de requisitos, modelos conceptuales, diseño, código, etc.) pretende 
comprobar su calidad.  

La calidad significa una cosa distinta para cada producto, precisamente porque son artefactos 
distintos. Del mismo modo que la calidad de un plano y la calidad de una casa significa cosas 
distintas. En un plano de un futuro edificio se desea que sea claro (se entienda suficientemente bien 
como para servir de guía a la construcción del edificio), que sea correcto (por ejemplo, que las 
líneas que identifican paredes indiquen, a escala, efectivamente el lugar donde se desea que vayan 
las paredes), que no tenga inconsistencias (por ejemplo, entre las distintas hojas que forman el 
plano; si una página se focaliza, digamos, en una habitación que en otra página aparecía sólo sus 
cuatro paredes, que las medidas de las líneas en ambas páginas se correspondan con la misma 
medida de la realidad), etc.. Sin embargo, de una casa se espera que sea robusta (por ejemplo, que 
no se caiga), usable (por ejemplo, que los peldaños de las escaleras no sean tan estrechos que 
provoquen caídas) etc. Por tanto, cuando se esté evaluando estáticamente un producto software, es 
importante que el evaluador tenga en mente qué tipo de defectos está buscando y cuál sería un 
producto de ese tipo de calidad adecuada. Digamos que si uno no sabe lo que busca (por ejemplo, 
inconsistencias al revisar la calidad de un plano) es difícil que lo encuentre, aunque lo tenga delante. 

Los defectos que se buscan al evaluar estáticamente los productos software son: 

Para los requisitos:

o Corrección. Los requisitos especifican correctamente lo que el sistema debe 
hacer. Es decir, un requisito incorrecto es un requisito que no cumple bien su 
función. Puesto que la función de un requisito es indicar qué debe hacer el 
sistema, un requisito incorrecto será aquel que indica incorrectamente lo que 
debe hacer el sistema. Por ejemplo: el algoritmo indicado para hacer un 
cálculo está mal; dice que algo debe eliminarse cuando en realidad debe 
guardarse; etc. En otras palabras, un requisito incorrecto no se corresponde con 
lo acordado o adecuado; contiene un error.  

o Compleción. Especificación completamente el problema. Está especificado 
todo lo que tiene que hacer el sistema y no incluye nada que el sistema no deba 
hacer. En dos palabras: no falta nada; no sobra nada 

o Consistencia. No hay requisitos contradictorios. 

o Ambigüedad. Los requisitos no pueden estar sujetos a interpretación. Si fuese 
así, un mismo requisito puede ser interpretado de modo distinto por dos 
personas diferentes y, por tanto, crear dos sistemas distintos. Si esto es así, los 
requisitos pierden su valor pues dejan de cumplir su función (indicar qué debe 
hacer el sistema). Las ambigüedades provocan interpretación por parte de la 
persona que use o lea los requisitos. Por tanto, una especificación debe carecer 
de ambigüedades. 

o Claridad. Se entiende claramente lo que está especificado.

Para el diseño:
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o Corrección. El diseño no debe contener errores. Los errores de corrección se 
pueden referir a dos aspectos. Defectos de “escritura”, es decir, defectos en el 
uso de la notación de diseño empleada (el diseño contiene detalles prohibidos 
por la notación). Defectos con respecto a los requisitos: el diseño no realiza lo 
que el requisito establece. Hablando apropiadamente, los primeros son los 
puros defectos de corrección, mientras que los segundos son defectos de 
validez.

o Compleción. El diseño debe estar completo. Ya sea que diseña todo el sistema 
marcado por los requisitos; ya sea no diseñando ninguna parte no indicada en 
los requisitos. De nuevo, nada falta, nada sobra.

o Consistencia. Al igual que en los requisitos, el diseño debe ser consistente 
entre todas sus partes. No puede indicarse algo en una parte del diseño, y lo 
contrario en otra. 

o Factibilidad. El diseño debe ser realizable. Debe poderse implementar.

o Trazabilidad. Se debe poder navegar desde un requisito hasta el fragmento de 
diseño donde éste se encuentra representado.

Código Fuente:
o Corrección. El código no debe contener errores. Los errores de corrección se 

pueden referir a dos aspectos. Defectos de “escritura”, es decir, lo que 
habitualmente se conoce por “programa que no funciona”. Por ejemplo, bucles 
infinitos, variable definida de un tipo pero utilizada de otro, contador que se 
sale de las dimensiones de un array, etc. Defectos con respecto al diseño: el 
diseño no realiza lo que el diseño establece. 

De nuevo, hablando apropiadamente, los primeros son los puros defectos de corrección, 
mientras que los segundos son defectos de validez. Un defecto de corrección es un código 
que está mal para cualquier dominio. Un defecto de validez es un código que, en este 
dominio particular (el marcado por esta necesidad de usuario, estos requisitos, y este 
diseño) hace algo inapropiado. Por ejemplo, define una variable de un tipo (y se usa en el 
programa con ese tipo, es decir, “a primera vista” no hay nada incorrecto en la definición 
del tipo y su uso) que no es la que corresponde con el problema; o define un array de un 
tamaño que no es el que se corresponde con el problema. Nótese que para detectar los 
errores de validez (en cualquier producto) debe entenderse el problema que se pretende 
resolver, mientras que los defectos de corrección son errores siempre, aún sin conocer el 
problema que se pretende resolver.

o Compleción. El código debe estar completo. Una vez más, nada falta ni nada 
sobra (con respecto, en este caso, al diseño)

.

o Consistencia. Al igual que en los requisitos y diseño, el código debe ser 
consistente entre todas sus partes. No puede hacerse algo en una parte del 
código, y lo contrario en otra. 
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o Trazabilidad. Se debe poder navegar desde un requisito hasta el fragmento de 
código donde éste se ejecute, pasando por el fragmento de diseño. 

3.3 TÉCNICAS DE EVALUACIÓN ESTÁTICA 
Las técnicas de Evaluación estática de artefactos del desarrollo se las conoce de modo genérico por 
Revisiones. Las revisiones pretenden detectar manualmente defectos en cualquier producto del 
desarrollo. Por manualmente queremos decir que el producto en cuestión (sea requisito, diseño, 
código, etc.) está impreso en papel y los revisores están analizando ese producto mediante la lectura 
del mismo, sin ejecutarlo. 

Existen varios tipos de revisiones, dependiendo de qué se busca y cómo se analiza ese producto. 
Podemos distinguir entre: 

Revisiones informales, también llamadas inadecuadamente sólo Revisiones (lo cual 
genera confusión con el nombre genérico de todas estas técnicas). Las Revisiones 
Informales no dejan de ser un intercambio de opiniones entre los participantes. 

Revisiones formales o Inspecciones. En las Revisiones Formales, los participantes son 
responsables de la fiabilidad de la evaluación, y generan un informe que refleja el acto 
de la revisión. Por tanto, sólo consideramos aquí como técnica de evaluación las 
revisiones formales, puesto que las informales podemos considerarlas un antepasado 
poco evolucionado de esta misma técnica. 

Walkthrough. Es una revisión que consiste en simular la ejecución de casos de prueba 
para el programa que se está evaluando. No existe traducción exacta en español y a 
menudo se usa el término en ingles. Quizás la mejor traducción porque ilustra muy 
bien la idea es Recorrido. De hecho, con los walkthrough se recorre el programa 
imitando lo que haría la computadora. 

Auditorias. Las auditorias contrastan los artefactos generados durante el desarrollo con 
estándares, generales o de la organización. Típicamente pretenden comprobar formatos 
de documentos, inclusión de toda la información necesaria, etc. Es decir, no se tratan 
de comprobaciones técnicas, sino de gestión o administración del proyecto. 

3.4 INSPECCIONES 

3.4.1 ¿QUÉ SON LAS INSPECCIONES?    
Las inspecciones de software son un método de análisis estático para verificar y validar un producto 
software manualmente.  Los términos Inspecciones y Revisiones se emplean a menudo como 
sinónimos. Sin embargo, como ya se ha visto, este uso intercambiable no es correcto.  

Las Inspecciones son un proceso bien definido y disciplinado donde un equipo de personas
cualificadas analiza un producto software usando una técnica de lectura con el propósito de detectar 
defectos. El objetivo principal de una inspección es detectar faltas antes de que la fase de prueba 
comience. Cualquier desviación  de una propiedad de calidad predefinida es considerada un defecto. 
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Para aprender a realizar inspecciones vamos a estudiar primero el proceso que debe seguirse y luego 
las técnicas de lectura. 

3.4.2 EL PROCESO DE INSPECCIÓN 

Las Inspecciones constan de dos partes: Primero, la comprensión del artefacto que se inspecciona; 
Y en segundo lugar, la búsqueda de faltas en dicho artefacto.  Más concretamente, una inspección 
tiene cuatro fases principales:  

1. Inicio – El objetivo es preparar la inspección y proporcionar la información que se 
necesita sobre el artefacto para realizar la inspección. 

2. Detección de defectos – Cada miembro del equipo realiza individualmente  la lectura 
del material, compresión del artefacto a revisar y la detección de faltas. Las Técnicas 
de Lectura ayudan en esta etapa al inspector tanto a comprender el artefacto como a 
detectar faltas. Basándose en las faltas detectadas cada miembro debe realizar una 
estimación subjetiva del número de faltas remanentes en el artefacto. 

3. Colección de defectos – El registro de las faltas encontrada por cada miembro del 
equipo es compilado en un solo documento que servirá de basa a la discusión sobre 
faltas que se realizará en grupo. Utilizando como base las faltas comunes encontradas 
por los distintos inspectores se puede realizar una estimación objetiva del número de 
faltas remanentes. En la reunión se discutirá si las faltas detectadas son falsos positivos 
(faltas que algún inspector cree que son defectos pero que en realidad no lo son) y se 
intentará encontrar más faltas ayudados por la sinergia del grupo. 

4. Corrección y seguimiento – El autor del artefacto inspeccionado debe corregir las 
faltas encontradas e informar de las correcciones realizadas a modo de seguimiento. 

Estas fases se subdividen además en varias subfases: 

1. Inicio 
1.1 Planificación 
1.2 Lanzamiento 

2. Detección de defectos 
3. Colección de defectos 

3.1 Compilación 
3.2 Inspección en grupo 

4. Corrección y seguimiento 
4.1 Corrección    
4.2 Seguimiento 

Veamos cada una de estas fases; 

Durante La Planificación se deben seleccionar los participantes, asignarles roles,  preparar un 
calendario para la reunión y distribuir el material a inspeccionar. Típicamente suele haber una 
persona en la organización o en el proyecto que es responsable de planificar todas las actividades de 
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inspección, aunque luego juegue además otros papeles. Los papeles que existen en una inspección 
son: 

Organizador. El organizador planifica las actividades de inspección en un proyecto, o 
incluso en varios proyectos (o entre proyectos, porque se intercambian participantes: 
los desarrollados de uno son inspectores de otro). 

Moderador. El moderador debe garantizar que se sigan los procedimientos de la 
inspección así como que los miembros del equipo cumplan sus responsabilidades. 
Además, modera las reuniones, lo que significa que el éxito de la reunión depende de 
esta persona y, por tanto, debe actuar como líder de la inspección. Es aconsejable que 
la persona que juegue este rol haya seguido cursos de manejo de reuniones y liderazgo 

Inspector. Los inspectores son los responsables de detectar  defectos en el producto 
software bajo inspección. Habitualmente, todos los participantes en una inspección 
actúan  también como inspectores, independientemente de que, además, jueguen algún 
otro papel. 

Lector/Presentador. Durante la reunión para la inspección en grupo, el lector dirigirá al 
equipo a través del material de modo completo y lógico. El material debe ser 
parafraseado a una velocidad que permita su examen detallado al resto de los 
participantes. Parafrasear el material significa que el lector debe explicar e interpretar 
el producto en lugar de leerlo literalmente. 
Autor. El autor  es la persona que ha desarrollado el producto que se esta 
inspeccionando y es el  responsable de la corrección de los defectos durante la fase de 
corrección. Durante la reunión, el  autor contesta a las preguntas que el lector no es 
capaz de responder. El autor no debe actuar al mismo tiempo ni de moderador, ni de 
lector, ni de escriba. 

Escriba. El secretario o escriba es responsable de incorporar todos los defectos en una 
lista de defectos durante la reunión. 

Recolector. El recolector recoge los defectos encontrados por los inspectores en caso 
de no haber una reunión de inspección. 

Es necesario hacer ciertas consideraciones sobre el número de participantes. Un equipo de 
inspección nunca debería contar con más de cinco miembros. Por otro lado, el número mínimo de 
participantes son dos: el autor (que actúa también de inspector) y un inspector. Lo recomendable es 
comenzar con un equipo de tres o cuatro personas: el autor, uno o dos inspectores y el moderador 
(que actúa también como lector y escriba). Tras unas cuantas inspecciones la organización puede 
experimentar incorporando un inspector más al grupo y evaluar si resulta rentable en términos de 
defectos encontrados. 

Sobre el tema de cómo seleccionar las personas adecuadas para una inspección, los candidatos  
principales para actuar como inspectores es el personal involucrado en el desarrollo del producto. 
Se pueden incorporar inspectores externos si poseen algún tipo de experiencia específica que 
enriquezca la inspección. Los inspectores deben tener un alto grado de experiencia y conocimiento. 

La fase de Lanzamiento consiste en una primera reunión donde el autor explica el producto a 
inspeccionar a los otros participantes. El objetivo principal de esta reunión de lanzamiento, es 
facilitar la comprensión e inspección a los participantes. No obstante, este meeting no es 
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completamente necesario, pues en ocasiones puede consumir más tiempo y recursos de los 
beneficios que reporte. Sin embargo, existen un par de condiciones bajo las cuales es recomendable 
realizar esta reunión. En primer lugar, cuando el artefacto a inspeccionar es complejo y difícil de 
comprender. En este caso una explicación por parte del autor sobre el producto a inspeccionar 
facilita la comprensión al resto de participantes. En segundo lugar, cuando el artefacto a 
inspeccionar pertenece a un sistema software de gran tamaño. En este caso, se hace necesario que el 
autor explique las relaciones entre el artefacto inspeccionado y el sistema software en su globalidad. 

La fase de Detección de Defectos es el corazón de la inspección. El objetivo de esta fase es 
escudriñar un artefacto software pare obtener defectos. Localizar defectos es una actividad en parte 
individual y en parte de grupo. Si se olvida la parte individual de la inspección, se corre el riesgo de 
que los participantes sean más pasivos durante la reunión y se escuden en el grupo para evitar hacer 
su contribución. Así pues, es deseable que exista una fase de detección individual de defectos con el 
objetivo explícito de que cada participante examine y entienda en solitario el producto y busque 
defectos. Este esfuerzo individual garantiza que los participantes irán bien preparados a la puesta en 
común. 

Los defectos detectados por cada participante en la inspección deben ser reunidos y documentado. 
Es más, debe decidirse si un defecto es realmente un defecto. Esta recolección de defectos y la 
discusión sobre falsos positivos se realizan, respectivamente, en la fase de Compilación y Reunión.
La recolección de defectos debe ayudar a tomar la decisión sobre si es necesaria una reinspección 
del artefacto o no.  Esta decisión dependerá de la cantidad de defectos encontrados y sobre todo de 
la coincidencia de los defectos encontrados por distintos participantes. Una coincidencia alta de los 
defectos encontrados por unos y por otros (y un numero bajo de defectos encontrados) hace pensar 
que la cantidad de defectos que permanecen ocultos sea baja. Una coincidencia pobre (y un numero 
relativamente alto de defectos encontrados) hace pensar que aun quedan muchos defectos por 
detectar y que, por tanto, es necesaria una reinspección (una vez acabada ésta y corregidas las faltas 
encontradas). 

Dado que una reunión consume bastantes recursos (y más cuantos más participantes involucre) se 
ha pensado en una alternativa para hacer las reuniones más ligeras. Las llamadas reuniones de 
deposición, donde sólo asisten tres participantes: moderador, autor, y un representante de los 
inspectores. Este representante suele ser el inspector de más experiencia, el cual recibe los defectos 
detectados por los otros inspectores y decide él, unilateralmente, sobre los falsos positivos. Algunos 
autores incluso han dudado del efecto sinergia de las reuniones y han aconsejado su no realización. 
Parece que lo más recomendable es que las organizaciones comiencen con un proceso de inspección 
tradicional, donde la reunión sirve para compilar defectos y discutir falsos positivos, y con el 
tiempo y la experiencia prueben a variar el proceso eliminando la reunión y estudiando si se 
obtienen beneficios equivalentes en términos de defectos encontrados. 

Es importante resaltar, que la reunión de una inspección no es una sesión para resolver los defectos 
u otros problemas. No se deben discutir en estas reuniones ni soluciones digamos radicales (otras 
alternativas de diseño o implementación, que el autor no ha utilizado pero podría haberlo hecho), ni 
cómo resolver los defectos detectados, y, mucho menos, discutir sobre conflictos personales o 
departamentales. 

Finalmente, el autor corrige su artefacto para resolver los defectos encontrados o bien proporciona 
una explicación razonada sobre porqué cierto defecto detectado en realidad no lo es. Para esto, el 
autor repasa la lista de defectos recopilada y discute o corrige cada defecto. El autor deberá enviar 
al moderador un informe sobre los defectos corregidos o, en caso de no haber corregido alguno, 
porqué no debe corregirse. Este informe sirve de seguimiento y cierre de la inspección, o, en caso 
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de haberse decidido en la fase de recopilación que el artefacto necesitaba reinspección, se iniciará 
de nuevo el proceso. 

3.4.3 ESTIMACIÓN DE LOS DEFECTOS REMANENTES 
A pesar de que el propósito principal de las Inspecciones es detectar y reducir el número de 
defectos, un efecto colateral pero importante es que permiten realizar desde momentos muy 
iniciales del desarrollo predicciones de la calidad del producto. Concretamente, las estimaciones de 
las faltas remanentes tras una inspección deben utilizarse como control de la calidad del proceso de 
desarrollo. 

Hay varios momentos de estimación de faltas remanentes en una inspección. Al realizar la búsqueda 
individual de faltas, el inspector puede tener una idea de las faltas remanentes en base a las 
siguientes dos heurísticas: 

Encontrar muchas faltas es sospechoso. Muchas faltas detectadas hacen pensar que 
debe haber muchas más, puesto que la creencia de que queden pocas faltas sólo se 
puede apoyar en la confianza en el proceso de inspección y no en la calidad del 
artefacto (que parece bastante baja puesto que hemos encontrado muchas faltas) 
Encontrar muy pocas faltas también resulta sospechoso, especialmente si es la primera 
vez que se inspecciona este artefacto. Pocas faltas hacen pensar que deben quedar 
muchas más, puesto que esta situación hace dudar sobre la calidad del proceso de 
inspección: No puede saberse si se han encontrado pocas debido a la alta calidad del 
artefacto o a la baja calidad de la inspección. 

La estimación más fiable sobre el número de faltas remanentes que se puede obtener en una 
Inspección es la coincidencia de faltas entre los distintos inspectores. Los métodos que explotan 
coincidencias para estimar se llaman Estimaciones Captura-Recaptura y no son originarias de la 
Ingeniería del Software. En concreto lo usó por primera vez Laplace para estimar la población de 
Francia en 1786, y se utilizan a menudo en Biología para estimar el tamaño de poblaciones de 
animales. En el caso de las Inspecciones, el nivel de coincidencia de las faltas detectadas por los 
distintos revisores es usado como estimador15.

La idea sobre la que se basa el uso de las coincidencias es la siguiente: Pocas coincidencias entre los 
revisores, significa un número alto de faltas remanentes;  Muchas coincidencias, significará pocas 
faltas remanentes. Los casos extremos son los siguientes. Supongamos que todos los revisores han 
encontrado exactamente el mismo conjunto de faltas. Esto debe significar que deben quedar muy 
pocas faltas, puesto que el proceso de inspección parece haber sido bueno (los inspectores han 
encontrado las mismas faltas) parece poco probable que queden más faltas por ahí que ningún 
revisor ha encontrado. Supongamos ahora que ningún revisor ha encontrado las mismas faltas que 
otro revisor. Esto debe querer decir que quedan muchas más por encontrar, puesto que el proceso de 
revisión parece haber sido pobre (a cada revisor se le han quedado ocultas n faltas –todas las 
encontradas por los otros revisores-) vaya usted a saber cuántas faltas más han quedado ocultas a 
todos los revisores. Esta situación debería implicar una nueva inspección del artefacto (tanto para 
mejorar la calidad del mismo, como para hacer un intento de mejorar la propia inspección). 

                                                     
15 Un estimador en una fórmula usada para predecir el número de faltas que quedan. Un modelo de estimación 
es el paraguas para denominar a un conjunto de estimadores basados en los mismos prerrequisitos. 
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3.4.4 TÉCNICAS DE LECTURA 
Las técnicas de lectura son guías que ayudan a detectar defectos en los productos software. 
Típicamente, una técnica de lectura consiste en una serie de pasos o procedimientos cuyo propósito 
es que el inspector adquiere un conocimiento profundo del producto software que inspecciona. La 
comprensión de un producto software bajo inspección es un prerrequisito para detectar defectos 
sutiles y, o, complejos. En cierto sentido, una técnica de lectura puede verse como un mecanismo 
para que los inspectores detecten defectos en el producto inspeccionado. 

Las técnicas de lectura más populares son la lectura Ad-hoc y la lectura basada en listas de 
comprobación. Ambas técnicas pueden aplicarse sobre cualquier artefacto software, no solo sobre 
código. Además de estas dos técnicas existen otras que, aunque menos utilizadas en la industria, 
intentan abordar los problemas de la lectura con listas y la lectura ad-hoc: Lectura por Abstracción, 
Revisión Activa de Diseño y Lectura Basada en Escenarios. Esta última se trata de una familia de 
técnicas a la que pertenecen: Lectura Basada en Defectos y Lectura Basada en Perspectivas. 
Veamos en qué consisten cada una. 

3.4.4.1 LECTURA SIN CHECKLISTS Y CON CHECKLISTS 

En la técnica de lectura Ad-hoc, el producto software se entrega a los inspectores sin ninguna 
indicación o guía sobre cómo proceder con el producto ni qué buscar. Por eso la denominamos 
también cómo Lectura sin Checklists. 

Sin embargo, que los participantes no cuenten con guías de qué buscar no significa que no 
escudriñen sistemáticamente el producto inspeccionado, ni tampoco que no tengan en mente el tipo 
de defecto que están buscando. Como ya hemos dicho antes, si no se sabe lo que se busca, es 
imposible encontrarlo. El término "ad-hoc" sólo se refiere al hecho de no proporcionar apoyo a los 
inspectores. En este caso la detección de los defectos depende completamente de las habilidades, 
conocimientos y experiencia del inspector.  

Típicamente, el inspector deberá buscar secuencialmente los defectos típicos del producto que esté 
leyendo (y que hemos indicado más arriba). Por ejemplo, si se está inspeccionando unos requisitos, 
el inspector, buscará sistemática y secuencialmente defectos de corrección, de completud, de 
ambigüedad, etc. 

Para practicar esta técnica, en el Anexo A aparece unos requisitos con defectos. Intenta buscarlos de 
acuerdo a lo indicado en el párrafo anterior. Sin guía alguna, simplemente utilizando la lista de 
criterios de calidad que debe cumplir unos requisitos que hemos indicado anteriormente. 

La lectura basada en Listas de Comprobación (checklists, en inglés) proporciona un apoyo 
mayor mediante preguntas que los inspectores deben de responder mientras leen el artefacto. Es 
decir, esta técnica proporciona listas que ayudan al inspector a saber qué tipo de faltas buscar. 
Aunque una lista supone más ayuda que nada, esta técnica presenta la debilidad de que las 
preguntas proporcionan poco apoyo para ayudar a un inspector a entender el artefacto 
inspeccionado. Además, las preguntas son  a menudo generales y no suficientemente adaptadas a un 
entorno de desarrollo particular. Finalmente, las preguntas en una lista de comprobación están 
limitadas a la detección de defectos de un tipo determinado, típicamente de corrección, puesto que 
las listas establecen errores universales (independientes del contexto y el problema). 
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3.4.4.1.1 Checklists para Requisitos y Diseño

Las listas de comprobación para requisitos contienen preguntas sobre los defectos típicos que suelen 
aparecer en los requisitos. Preguntas típicas que aparecen en las checklists de requisitos son: 

¿Existen contradicciones en la especificación de los requisitos? 
¿Resulta comprensible la especificación?
¿Está especificado el rendimiento? 
¿Puede ser eliminado algún requisito? ¿Pueden juntarse dos requisitos? 

 ¿Son redundantes o contradictorios? 
¿Se han especificado todos los recursos hardware necesarios? 
¿Se han especificado las interfaces externas necesarias? 
¿Se han definido los criterios de aceptación para cada una de las funciones 
especificadas? 

Nótese que las cinco primeras preguntas, corresponden simplemente a los criterios de calidad de los 
requisitos. Mientras que las tres últimas tratan olvidos típicos al especificar requisitos. Las dos que 
aparecen en primer lugar son comprobaciones sobre la especificación del hardware sobre el que 
correrá el futuro sistema y sobre cómo deberá interactuar con otros sistemas. La última comprueba 
que los requisitos contienen criterios de aceptación para cuando se realicen las pruebas de 
aceptación. 

Los requisitos necesitan ser evaluados de forma crítica para prevenir errores. En esta fase radica la 
calidad del producto software desde la perspectiva del usuario. Si la evaluación en general es difícil, 
la de los requisitos en particular lo es más, debido a que lo que se evalúa es la definición del 
problema. 

Con respecto al diseño, los objetivos principales de su evaluación estática son: 

Determinar si la solución elegida es la mejor de todas las opciones; es decir, si la opción es 
la más simple y la forma más fácil de realizar el trabajo. 
Determinar si la solución abarca todos los requisitos descritos en la especificación; es decir, 
si la solución elegida realizará la función encomendada al software. 

Al igual que la evaluación de requisitos, la evaluación de diseño es crucial, ya que los defectos de 
diseño que queden y sean transmitidos al código, cuando sean detectados en fases más avanzadas 
del desarrollo, o incluso durante el uso, implicará un rediseño del sistema, con la subsiguiente re-
codificación. Es decir, existirá una pérdida real de trabajo. 

Veamos un ejemplo de preguntas para el diseño: 

¿Cubre el diseño todos los requisitos funcionales? 
¿Resulta ambigua la documentación del diseño? 
¿Se ha aplicado la notación de diseño correctamente? 
¿Se han definido correctamente las interfaces entre elementos del diseño? 
¿Es el diseño suficientemente detallado como para que sea posible 
implementarlo en el lenguaje de programación elegido? 

En el Anexo B aparecen listas de comprobación para diferentes productos del desarrollo 
proporcionadas por la empresa Construx. Intenta revisar ahora de nuevo los requisitos del Anexo A, 
esta vez usando las listas de comprobación del Anexo B. Esta misma especificación de requisitos se 
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usa más tarde con otra técnica de lectura. Será entonces cuando aportemos la solución sobre qué 
defectos contienen estos requisitos.  

3.4.4.1.2 Checklists para Código

Las listas para código han sido mucho más estudiadas que para otros artefactos. Así hay listas para 
distintos lenguajes de programación, para distintas partes de código, etc. 

Una típica lista de comprobación para código contendrá varias partes   (una por los distintos tipos 
de defecto que se buscan) cada una con preguntas sobre defectos universales y típicos. Por ejemplo: 

Lógica del programa: 
¿Es correcta la lógica del programa? 
¿Está completa la lógica del programa?, es decir,  ¿está todo correctamente 
especificado sin faltar ninguna función?

Interfaces Internas: 
¿Es igual el número de parámetros recibidos por el módulo a probar al número 
de argumentos enviados?, además, ¿el orden es correcto? 
¿Los atributos (por ejemplo, tipo y tamaño) de cada parámetro recibido por el 
módulo a probar coinciden con los atributos del argumento correspondiente? 
¿Coinciden las unidades en las que se expresan parámetros y argumentos? Por 
ejemplo, argumentos en grados y parámetros en radianes.¿Altera el módulo un 
parámetro de sólo lectura?¿Son consistentes las definiciones de variables 
globales entre los módulos? 

Interfaces Externas: 
¿Se declaran los ficheros con todos sus atributos de forma correcta?
¿Se abren todos los ficheros antes de usarlos? 
¿Coincide el formato del fichero con el formato especificado en la lectura?¿Se 
manejan correctamente las condiciones de fin de fichero? ¿Se los libera de 
memoria? 
¿Se manejan correctamente los errores de entrada/salida? 

Datos: 
o Referencias de datos. Se refieren a los accesos que se realizan a los mismos. 

Ejemplos típicos son: 
Utilizar variables no inicializadas 
Salirse del límite de las matrices y vectores 
Superar el límite de tamaño de una cadena 

o Declaración de datos. El propósito es comprobar que todas las definiciones de los 
datos locales son correctas. Por ejemplo: 

Comprobar que no hay dos variables con el mismo nombre 
Comprobar que todas las variables estén declaradas 
Comprobar que las longitudes y tipos de las variables sean correctos. 

o Cálculo. Intenta localizar errores derivados del uso de las variables. Por ejemplo: 
Comprobar que no se producen overflow o underflow (valores fuera de 
rango, por encima o por debajo) en los cálculos o divisiones por cero. 

o Comparación. Intenta localizar errores en las comparaciones realizadas en 
instrucciones tipo  If-Then-Else, While, etc. Por ejemplo: 

Comprobar que no existen comparaciones entre variables con diferentes 
tipos de datos o si las variables tienen diferente longitud. 
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Comprobar si los operadores utilizados en la comparación son correctos, si 
utilizan operadores booleanos comprobar si los operandos usados son 
booleanos, etc. 

En el Anexo C se proporcionan distintas listas de comprobación para diversas partes y 
características del código. En el Anexo D tienes un programa y una pequeña lista de comprobación 
de código para que te ejercites buscando defectos. Deberías detectar al menos un par de defectos, al 
menos. Más adelante usaremos este mismo programa para practicar con otra técnica y será entonces 
cuando proporcionaremos la lista de defectos de este programa.

3.4.4.2 LECTURA POR ABSTRACCIÓN SUCESIVA 

La Lectura por Abstracción Sucesiva sirve para inspeccionar código, y no otro tipo de artefacto 
como requisitos o diseño. La idea sobre la que se basa esta técnica de lectura para detectar defectos 
es en la comparación entre la especificación del programa (es decir, el texto que describe lo que el 
programa debería hacer) y lo que el programa hacer realmente. Naturalmente, todos aquellos puntos 
donde no coincida lo que el programa debería hacer con lo que el programa hace es un defecto. 

Dado que comparar código con texto (la especificación) es inapropiado pues se estarían 
comparando unidades distintas (peras con manzanas), se hace necesario convertir ambos artefactos 
a las mismas “unidades”. Lo que se hace, entonces, es convertir el programa en una especificación 
en forma de texto. De modo que podamos comparar especificación (texto) con especificación 
(texto).

Obtener una especificación a partir de un código significa recorrer el camino de la programación en 
sentido inverso. El sentido directo es obtener un código a partir de una especificación. Este camino 
se recorre en una seria de pasos (que a menudo quedan ocultos en la mente del programador y no se 
hacen explícitos, pero que no por eso dejan de existir). El recorrido directo del camino de la 
especificación al código consta de los siguientes pasos: 

1. Leer la especificación varias veces hasta que el programador ha entendido lo que el código 
debe hacer. 

2. Descomponer la tarea que el programa debe hacer en subtareas, que típicamente se 
corresponderán con las funciones o módulos que compondrán el programa. Esta 
descomposición muestra la relación entre funciones, que no siempre es secuencial, sino 
típicamente en forma de árbol: Funciones alternativas que se ejecutarán dependiendo de 
alguna condición; Funciones suplementarias que se ejecutaran siempre una si se ejecuta la 
otra; etc. 

3. Para cada uno de estas subtareas (funciones): 
3.1. Hacer una descripción sistemática (típicamente en pseudocódigo) de cómo realizar la 

tarea. En esta descripción se pueden ya apreciar las principales estructuras de las que 
constará la función (bucles, condicionales, etc.) 

3.2. Programar cada línea de código que compone la función 

Como puede observarse en este proceso, el programador trabaja desde la especificación por 
descomposiciones sucesivas. Es decir, dividiendo una cosa compleja (la especificación) en cosas 
cada vez mas sencillas (primero las funciones, luego las estructuras elementales de los programas, 
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finalmente las líneas de código). Este tipo de tarea se realiza de arriba hacia abajo, partiendo de la 
especificación (arriba o nodo raíz) y llegando a n líneas de código (abajo o nodos hojas). 

Pues bien, si queremos obtener una especificación a partir de un código deberemos hacer este 
mismo recorrido pero en sentido contrario: de abajo hacia arriba. Por tanto, deberemos comenzar 
con las líneas de código, agruparlas en estructuras elementales, y éstas en funciones y éstas en un 
todo que será la descripción del comportamiento del programa. En este caso no estamos trabajando 
descomponiendo, sino componiendo. La tarea que se realiza es de abstracción. De ahí el nombre de 
la técnica: abstracción sucesiva (ir sucesivamente –ascendiendo en niveles cada vez superiores- 
abstrayendo qué hace cada elemento –primero las líneas, luego las estructuras, finalmente las 
funciones). 

Esta técnica requiere que el inspector lea una serie de líneas de código y que abstraiga la función 
que estas líneas computan. El inspector debe repetir este procedimiento hasta que la función final 
del código que se está inspeccionando se haya abstraído y pueda compararse con la especificación 
original del programa.  

Más concretamente, el proceso que se debe seguir para realizar la abstracción sucesiva es el 
siguiente: 

1. Leer por encima el código para tener una idea general del programa. 

2. Determinar las dependencias entre las funciones individuales del código fuente (quién 
llama a quién). Para esto puede usarse un árbol de llamadas para representar tales 
dependencias comenzando por las hojas (funciones que no llaman a nadie) y acabando 
por la raíz (función principal).  

3. Comprender qué hace cada función. Para ello se deberá: Entender la estructura de cada 
función individual identificando las estructuras elementales (secuencias, condicionales, 
bucles, etc.) y marcándolas; Combinar las estructuras elementales para formar 
estructuras más grandes hasta que se haya entendido la función entera. Es decir, para 
cada función y comenzando desde las funciones hoja y acabando por la raíz: 

3.1. Identificar las estructuras elementales de cada función y marcarlas de la 
más interna a la más externa. 

3.2. Determinar el significado de cada estructura comenzando con la más 
interna. Para ello pueden seguirse las siguientes recomendaciones: 

Usar los números de línea (líneas x-y) para identificar las líneas que 
abarca una estructura e indicar a su lado qué hace.  

Evitar utilizar conocimiento implícito que no resida en la estructura  
(valores iniciales, entradas o valores de parámetros).  

Usar principios generalmente aceptados del dominio de aplicación para 
mantener la descripción breve y entendible (“búsqueda en profundidad” 
en lugar de describir lo que hace la búsqueda en profundidad). 

3.3. Especificar el comportamiento de la función entera. Es decir, utilizar la 
información de los pasos 3.1 y 3.2 para entender qué hace la función y 
describirlo en texto. 
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4. Combinar el comportamiento de cada función y las relaciones entre ellas para entender 
el comportamiento del programa entero. El comportamiento deberá describirse en texto. 
Esta descripción es la especificación del programa obtenida a partir del código. 

5. Comparar la especificación obtenida con la especificación original del programa. Cada 
punto donde especificación original y especificación generada a partir del código no 
coincidan es un defecto. Anotar los defectos en una lista. 

Veamos un breve ejemplo para entender mejor la técnica. El programa “count” ya lo conoces pues 
lo has usado para practicar con la técnica de lectura con listas de comprobación. Centrémonos en el 
siguiente trozo de especificación original: 

Si alguno de los ficheros que se le pasa como argumento no existe, aparece por  la salida de 
error el mensaje de error correspondiente y se continúa procesando el resto de los ficheros. 

Que se implementa mediante las siguientes líneas de código entresacadas del programa “count”. 

    if (argc > 1 && (fp=fopen(argv[i], "r")) == NULL) { 

      fprintf (stdout, "can't open %s\n", argv[i]); 

      exit(1) 

     } 

La abstracción de estas líneas sería: 

Línea 1 Si no hay ficheros que coincidan con el argumento (fp=fopen(argv[i], "r")) == 
NULL) 

Línea 2 Se imprime por la salida estándar (stdout)el mensaje de que no se puede abrir el 
fichero (indicando el nombre del fichero) 

Línea 3 Se sale del programa 

Que se corresponde con la siguiente descripción: 

Se proporcionan argumentos, pero no hay ficheros con nombres correspondientes a los 
argumentos. En este caso, el programa se para con un mensaje de error que sale por la 
salida estándar. 

Nótese que las especificaciones no coinciden en algunos puntos. En la Tabla 2 se ve la comparación 
y aparecen en negrita señaladas las diferencias. 
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ESPECIFICACIÓN ORIGINAL ESPECIFICACIÓN OBTENIDA POR 
ABSTRACCIÓN 

Si alguno de los ficheros que se le pasa como 
argumento no existe, aparece por  la salida de 
error el mensaje de error correspondiente y se
continúa procesando el resto de los ficheros. 

Se proporcionan argumentos, pero no hay 
ficheros con nombres correspondientes a los 
argumentos. En este caso, el programa se 
para con un mensaje de error que sale por la 
salida estándar.

Tabla 2.  Diferencias entre especificación original y especificación abstraida 

Por tanto, se detecta la siguiente falta en el código: 

Falta en línea 2: La llamada a “fprintf” usa “stdout” en lugar de “stderr”. 

Causa fallo: Los mensajes de error aparecen en la salida estándar (stdout) en lugar de la 
salida estándar de errores (stderr). 

En el Anexo E se muestra la aplicación de esta técnica al programa completo “count”. Intenta 
practicar con este ejercicio realizando tú mismo la abstracción y detección de faltas antes de mirar 
la solución proporcionada. Además, el Anexo F y el Anexo G contienen dos programas más y su 
lista de defectos para que el lector se ejercite hasta dominar esta técnica de lectura. 

3.4.4.3 LECTURA ACTIVA DE DISEÑO 

La Revisión Activa de Diseño sólo es aplicable sobre el diseño, y no sobre código o requisitos. 
Esta técnica propone una cierta variación metodológica al proceso básico de inspección. En 
concreto requiere que los inspectores tomen un papel más activo del habitual, solicitando que hagan 
aseveraciones sobre determinadas partes del diseño, en lugar de simplemente señalar defectos. La 
Revisión Activa de Diseño considera que la inspección debe explotar más la interacción entre autor 
e inspector, y que la inspección tradicional limita demasiado esta interacción. En esta técnica sólo 
se definen dos roles: un inspector que tiene la responsabilidad de encontrar defectos, y un diseñador 
que es el autor del diseño que se esta examinando.  

El proceso de la Inspección Activa de Diseño consta de tres pasos. Comienza con una fase de inicio 
donde el diseñador presenta una visión general del diseño que se pretende inspeccionar y también se 
establece el calendario. La segunda fase es la de detección, para la cual el autor proporciona un 
cuestionario para guiar a los inspectores. Las preguntas sólo deben poderse responder tras un 
estudio detallado y cuidadoso del documento de diseño. Esto es, los inspectores deben elaborar una 
respuesta, en lugar de simplemente responder sí o no. Las preguntas refuerzan un papel activo de 
inspección puesto que deben realizar afirmaciones sobre decisiones de diseño. Por ejemplo, se le 
puede pedir al inspector que escriba un segmento de programa que implemente un diseño particular 
al inspeccionar un diseño de bajo nivel. El ultimo paso es la recolección de defectos que se realiza 
en una reunión de inspección. Sin embargo, el meeting se subdivide en pequeñas reuniones 
especializadas, cada una se concentra en una propiedad de calidad del artefacto. Por ejemplo, 
comprobar la consistencia entre las asunciones y las funciones, es decir, determinar si las 
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asunciones son consistentes y detalladas lo suficiente para asegurar que las funciones puedan ser 
correctamente implementadas y usadas. 

3.4.4.4 LECTURA BASADA EN ESCENARIOS 

La Lectura Basada en Escenarios proporciona guías al inspector (escenarios que pueden ser 
preguntas pero también alguna descripción más detallada) sobre cómo realizar el examen del 
artefacto. Principalmente, un escenario limita la atención de un inspector en la detección de defectos 
particulares definidos por la guía. Dado que inspectores diferentes pueden usar escenarios distintos, 
y como cada escenario se centra en diferentes tipos de defectos, se espera que el equipo de 
inspección resulte más efectivo en su globalidad .Existen dos técnicas de lectura basada en 
escenarios: Lectura Basada en Defectos y Lectura Basada en Perspectivas. Ambas técnicas 
examinan documentos de requisitos. 

La Lectura Basada en Defectos focaliza cada inspector en una clase distinta de defecto mientras 
inspecciona un documento de requisitos. Contestar a las preguntas planteadas en el escenario ayuda 
al inspector a encontrar defectos de determinado tipo.  

La Lectura Basada en Perspectiva establece que un producto software debería inspeccionarse bajo 
las perspectivas de los distintos participantes en un proyecto de desarrollo. Las perspectivas 
dependen del papel que los distintos participantes tienen en el proyecto. Para cada perspectiva se 
definen uno o varios escenarios consistentes en actividades repetibles que un inspector debe realizar 
y preguntas que el inspector debe responder.  

Por ejemplo, diseñar los casos de prueba es una actividad típicamente realizada por el validador. 
Así pues, un inspector leyendo desde la perspectiva de un validador debe pensar en la obtención de 
los casos de prueba. Mientras que un inspector ejerciendo la perspectiva del diseñador, deberá leer 
ese mismo artefacto pensando en que va  atener que realizar el diseño. 

En el Anexo H, Anexo I y Anexo J se muestran respectivamente las perspectivas del diseñador, 
validador y usuario respectivamente para que las uses con los requisitos del Anexo A. Cada 
perspectiva descubre defectos distintos. En dichos anexos te proporcionamos también la solución de 
qué defectos son encontrados desde cada perspectiva. Finalmente, y a modo de resumen el Anexo K 
puedes encontrar una tabla con todos los defectos de los requisitos del Anexo A. 
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4. TÉCNICAS DE EVALUACIÓN DINÁMICA 

4.1 CARACTERÍSTICAS Y FASES DE LA PRUEBA  
Como se ha indicado anteriormente, a la aplicación de técnicas de evaluación dinámicas se le 
denomina también prueba del software. 

La Figura 2 muestra el contexto en el que se realiza la prueba de software. Concretamente la Prueba 
de software se puede definir como una actividad en la cual un sistema o uno de sus componentes se 
ejecuta en circunstancias previamente especificadas (configuración de la prueba), registrándose los 
resultados obtenidos. Seguidamente se realiza un proceso de Evaluación en el que los resultados 
obtenidos se comparan con los resultados esperados para localizar fallos en el software. Estos fallos 
conducen a un proceso de Depuración en el que es necesario identificar la falta asociada con cada 
fallo y corregirla, pudiendo dar lugar a una nueva prueba. Como resultado final se puede obtener 
una determinada Predicción de Fiabilidad, tal como se indicó anteriormente, o un cierto nivel de 
confianza en el software probado. 

PruebaPrueba

Modelo de Modelo de 
FiabilidadFiabilidad

DepuraciónDepuración

EvaluaciónEvaluación

ConfiguraciónConfiguración
del Softwaredel Software

ConfiguraciónConfiguración
de lade la

PruebaPrueba

FallosFallos

CorrecionesCorreciones

PredicciónPredicción
FiabilidadFiabilidad

Resultados Resultados 
esperadosesperados

Resultados de Resultados de 
la pruebala prueba

Datos de tasa Datos de tasa 
de errorde error

Figura 2. Contexto de la Prueba de Software 

El objetivo de las pruebas no es asegurar la ausencia de defectos en un software, únicamente puede 
demostrar que existen defectos en el software. Nuestro objetivo es pues, diseñar pruebas que 
sistemáticamente saquen a la luz diferentes clases de errores, haciéndolo con la menor cantidad de 
tiempo y esfuerzo.  

Para ser más eficaces (es decir, con más alta probabilidad de encontrar errores), las pruebas 
deberían ser realizadas por un equipo independiente al que realizó el software. El ingeniero de 
software que creó el sistema no es el más adecuado para llevar a cabo las pruebas de dicho 
software, ya que inconscientemente tratará de demostrar que el software funciona, y no que no lo 
hace, por lo que la prueba puede tener menos éxito. 

Una prueba de software, comparando los resultados obtenidos con los esperados. A continuación se 
presentan algunas características de una buena prueba: 

Una buena prueba ha de tener una alta probabilidad de encontrar un fallo. Para alcanzar este 
objetivo el responsable de la prueba debe entender el software e intentar desarrollar una 
imagen mental de cómo podría fallar. 
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Una buena prueba debe centrarse en dos objetivos: 1) probar si el software no hace lo que 
debe hacer, y 2) probar si el software hace lo que no debe hacer.

Una buena prueba no debe ser redundante. El tiempo y los recursos son limitados, así que 
todas las pruebas deberían tener un propósito diferente.

Una buena prueba debería ser la “mejor de la cosecha”. Esto es, se debería emplear la 
prueba que tenga la más alta probabilidad de descubrir una clase entera de errores.

Una buena prueba no debería ser ni demasiado sencilla ni demasiado compleja, pero si se 
quieren combinar varias pruebas a la vez se pueden enmascarar errores, por lo que en 
general, cada prueba debería realizarse separadamente.

Veamos ahora cuáles son las tareas a realizar para probar un software: 

1. Diseño de las pruebas. Esto es, identificación de la técnica o técnicas de pruebas que se 
utilizarán para probar el software. Distintas técnicas de prueba ejercitan diferentes criterios 
como guía para realizar las pruebas. Seguidamente veremos algunas de estas técnicas.  

2. Generación de los casos de prueba. Los casos de prueba representan los datos que se 
utilizarán como entrada para ejecutar el software a probar. Más concretamente los casos de 
prueba determinan un conjunto de entradas, condiciones de ejecución y resultados 
esperados para un objetivo particular. Como veremos posteriormente, cada técnica de 
pruebas proporciona unos criterios distintos para generar estos casos o datos de prueba. Por 
lo tanto, durante la tarea de generación de casos de prueba, se han de confeccionar los 
distintos casos de prueba según la técnica o técnicas identificadas previamente. La 
generación de cada caso de prueba debe ir acompañada del resultado que ha de producir el 
software al ejecutar dicho caso (como se verá más adelante, esto es necesario para detectar 
un posible fallo en el programa).  

3. Definición de los procedimientos de la prueba. Esto es, especificación de cómo se va a 
llevar a cabo el proceso, quién lo va a realizar, cuándo, …  

4. Ejecución de la prueba, aplicando los casos de prueba generados previamente e 
identificando los posibles fallos producidos al comparar los resultados esperados con los 
resultados obtenidos. 

5. Realización de un informe de la prueba, con el resultado de la ejecución de las pruebas, qué 
casos de prueba pasaron satisfactoriamente, cuáles no, y qué fallos se detectaron. 

Tras estas tareas es necesario realizar un proceso de depuración de las faltas asociadas a los fallos 
identificados. Nosotros nos centraremos en el segundo paso, explicando cómo distintas técnicas de 
pruebas pueden proporcionar criterios para generar distintos datos de prueba. 

4.2 TÉCNICAS DE PRUEBA 
Como se ha indicado anteriormente, las técnicas de evaluación dinámica o prueba proporcionan 
distintos criterios para generar casos de prueba que provoquen fallos en los programas. Estas 
técnicas se agrupan  en: 

Técnicas de caja blanca o estructurales, que se basan en un minucioso examen de los 
detalles procedimentales del código a evaluar, por lo que es necesario conocer la lógica del 
programa. 
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Técnicas de caja negra o funcionales, que realizan pruebas sobre la interfaz del programa a 
probar, entendiendo por interfaz las entradas y salidas de dicho programa. No es necesario 
conocer la lógica del programa, únicamente la funcionalidad que debe realizar.  

La Figura 3 representa gráficamente la filosofía de las pruebas de caja blanca y caja negra. Como se 
puede observar las pruebas de caja blanca necesitan conocer los detalles procedimentales del 
código, mientras que las de caja negra únicamente necesitan saber el objetivo o funcionalidad que el 
código ha de proporcionar. 

Figura 3. Representación de pruebas de Caja Blanca y Caja Negra 

A primera vista parecería que una prueba de caja blanca completa nos llevaría a disponer de un 
código perfectamente correcto. De hecho esto ocurriría si se han probado todos los posibles 
caminos por los que puede pasar el flujo de control de un programa. Sin embargo, para programas 
de cierta envergadura, el número de casos de prueba que habría que generar sería excesivo, nótese 
que el número de caminos incrementa exponencialmente a medida que el número de sentencias 
condicionales y bucles aumenta. Sin embargo, este tipo de prueba no se desecha como 
impracticable. Se pueden elegir y ejercitar ciertos caminos representativos de un programa. 

Por su parte, tampoco sería factible en una prueba de caja negra probar todas y cada una de las 
posibles entradas a un programa, por lo que análogamente a como ocurría con las técnicas de caja 
blanca, se seleccionan un conjunto representativo de entradas y se generan los correspondientes 
casos de prueba, con el fin de provocar fallos en los programas. 

En realidad estos dos tipos de técnicas son técnicas complementarias que han de aplicarse al realizar 
una prueba dinámica, ya que pueden ayudar a identificar distintos tipos de faltas en un programa. 

A continuación, se describen en detalle los procedimientos propuestos por ambos tipos de técnicas 
para generar casos de prueba. 

4.2.1 PRUEBAS DE CAJA BLANCA O ESTRUCTURALES 

A este tipo de técnicas se le conoce también como Técnicas de Caja Transparente o de Cristal. Este 
método se centra en cómo diseñar los casos de prueba atendiendo al comportamiento interno y la 
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estructura del programa. Se examina así la lógica interna del programa sin considerar los aspectos 
de rendimiento. 

El objetivo de la técnica es diseñar casos de prueba para que se ejecuten, al menos una vez, todas 
las sentencias del programa, y todas las condiciones tanto en su vertiente verdadera como falsa.  

Como se ha indicado ya, puede ser impracticable realizar una prueba exhaustiva de todos los 
caminos de un programa. Por ello se han definido distintos criterios de cobertura lógica, que 
permiten decidir qué sentencias o caminos se deben examinar con los casos de prueba. Estos 
criterios son: 

- Cobertura de Sentencias: Se escriben casos de prueba suficientes para que cada sentencia 
en el programa se ejecute, al menos, una vez. 

- Cobertura de Decisión: Se escriben casos de prueba suficientes para que cada decisión en el 
programa se ejecute una vez con resultado verdadero y otra con el falso. 

- Cobertura de Condiciones: Se escriben casos de prueba suficientes para que cada condición 
en una decisión tenga una vez resultado verdadero y otra falso. 

- Cobertura Decisión/Condición: Se escriben casos de prueba suficientes para que cada 
condición en una decisión tome todas las posibles salidas, al menos una vez, y cada 
decisión tome todas las posibles salidas, al menos una vez. 

- Cobertura de Condición Múltiple: Se escriben casos de prueba suficientes para que todas 
las combinaciones posibles de resultados de cada condición se invoquen al menos una vez.  

- Cobertura de Caminos: Se escriben casos de prueba suficientes para que se ejecuten todos 
los caminos de un programa. Entendiendo camino como una secuencia de sentencias 
encadenadas desde la entrada del programa hasta su salida.  

Este último criterio es el que se va a estudiar. 

4.2.1.1 COBERTURA DE CAMINOS 

La aplicación de este criterio de cobertura asegura que los casos de prueba diseñados permiten que 
todas las sentencias del programa sean ejecutadas al menos una vez y que las condiciones sean 
probadas tanto para su valor verdadero como falso.  

Una de las técnicas empleadas para aplicar este criterio de cobertura es la Prueba del Camino 
Básico. Esta técnica se basa en obtener una medida de la complejidad del diseño procedimental de 
un programa (o de la lógica del programa). Esta medida es la complejidad ciclomática de McCabe, 
y representa un límite superior para el número de casos de prueba que se deben realizar para 
asegurar que se ejecuta cada camino del programa.  

Los pasos a realizar para aplicar esta técnica son: 

- Representar el programa en un grafo de flujo 

- Calcular la complejidad ciclomática 

- Determinar el conjunto básico de caminos independientes 

- Derivar los casos de prueba que fuerzan la ejecución de cada camino. 

A continuación, se detallan cada uno de estos pasos. 
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4.2.1.1.1 Representar el programa en un grafo de flujo

El grafo de flujo se utiliza para representar flujo de control lógico de un programa. Para ello se 
utilizan los tres elementos siguientes: 

- Nodos: representan cero, una o varias sentencias en secuencia. Cada nodo comprende como 
máximo una sentencia de decisión (bifurcación).  

- Aristas: líneas que unen dos nodos.  

- Regiones: áreas delimitadas por aristas y nodos. Cuando se contabilizan las regiones de un 
programa debe incluirse el área externa como una región más.  

- Nodos predicado: cuando en una condición aparecen uno o más operadores lógicos (AND, 
OR, XOR, ...) se crea un nodo distinto por cada una de las condiciones simples. Cada nodo 
generado de esta forma se denomina nodo predicado. La Figura 4 muestra un ejemplo de 
condición múltiple. 

IF a OR b

THEN

x

ELSE

y

ENDIF

a

y

b x

Nodos 
Predicado

False True

False

Figura 4. Representación de condición múltiple 

Así, cada construcción lógica de un programa tiene una representación. La Figura 5 muestra dichas 
representaciones.  
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Secuencia While

CASE

opción1

opción N

END CASEopción2

if

Repeat

Figura 5. Representación en grafo de flujo de las estructuras lógicas de un programa 

La Figura 6 muestra un grafo de flujo del diagrama de módulos correspondiente. Nótese cómo la 
estructura principal corresponde a un while, y dentro del bucle se encuentran anidados dos 
constructores if.

Aristas

Nodos

Región

1

2

3

5 6

7

4

8

9

Figura 6. Ejemplo de grafo de flujo correspondiente a un diagrama de módulos 
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4.2.1.1.2 Calcular la complejidad ciclomática 

La complejidad ciclomática es una métrica del software que proporciona una medida cuantitativa de 
la complejidad lógica de un programa. En el contexto del método de prueba del camino básico, el 
valor de la complejidad ciclomática define el número de caminos independientes de dicho 
programa, y por lo tanto, el número de casos de prueba a realizar. Posteriormente veremos cómo se 
identifican esos caminos, pero primero veamos cómo se puede calcular la complejidad ciclomática a 
partir de un grafo de flujo, para obtener el número de caminos a identificar. 

Existen varias formas de calcular la complejidad ciclomática de un programa a partir de un grafo de 
flujo:

1. El número de regiones del grafo coincide con la complejidad ciclomática, V(G).  

2. La complejidad ciclomática, V(G), de un grafo de flujo G se define como 

V(G) = Aristas – Nodos + 2 

3. La complejidad ciclomática, V(G), de un grafo de flujo G se define como 

V(G) = Nodos Predicado + 1 

La Figura 7 representa, por ejemplo, las cuatro regiones del grafo de flujo,  obteniéndose así la 
complejidad ciclomática de 4. Análogamente se puede calcular el número de aristas y nodos 
predicados para confirmar la complejidad ciclomática. Así: 

V(G) = Número de regiones = 4 

V(G) = Aristas – Nodos + 2 = 11-9 + 2 = 4 

V(G) = Nodos Predicado + 1 = 3 +1 = 4 
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Figura 7. Número de regiones del grafo de flujo 

Esta complejidad ciclomática determina el número de casos de prueba que deben ejecutarse para 
garantizar que todas las sentencias de un programa se han ejecutado al menos una vez, y que cada 
condición se habrá ejecutado en sus vertientes verdadera y falsa. Veamos ahora, cómo se identifican 
estos caminos.  

4.2.1.1.3 Determinar el conjunto básico de caminos independientes

Un camino independiente es cualquier camino del programa que introduce, por lo menos, un nuevo 
conjunto de sentencias de proceso o una condición, respecto a los caminos existentes. En términos 
del diagrama de flujo, un camino independiente está constituido por lo menos por una arista que no 
haya sido recorrida anteriormente a la definición del camino. En la identificación de los distintos 
caminos de un programa para probar se debe tener en cuenta que cada nuevo camino debe tener el 
mínimo número de sentencias nuevas o condiciones nuevas respecto a los que ya existen. De esta 
manera se intenta que el proceso de depuración sea más sencillo.  

El conjunto de caminos independientes de un grafo no es único. No obstante, a continuación, se 
muestran algunas heurísticas para identificar dichos caminos: 

(a) Elegir un camino principal que represente una función válida que no sea un tratamiento de 
error. Debe intentar elegirse el camino que atraviese el máximo número de decisiones en el 
grafo. 

(b) Identificar el segundo camino mediante la localización de la primera decisión en el camino 
de la línea básica alternando su resultado mientras se mantiene el máximo número de 
decisiones originales del camino inicial. 

(c) Identificar un tercer camino, colocando la primera decisión en su valor original a la vez que 
se altera la segunda decisión del camino básico, mientras se intenta mantener el resto de 
decisiones originales. 

(d) Continuar el proceso hasta haber conseguido tratar todas las decisiones, intentando 
mantener como en su origen el resto de ellas. 

Este método permite obtener V(G) caminos independientes cubriendo el criterio de cobertura de 
decisión y sentencia. 

Así por ejemplo, para la el grafo de la Figura 7 los cuatro posibles caminos independientes 
generados serían:  

Camino 1:   1-10 

 Camino 2:   1-2-4-8-1-9 

 Camino 3:   1-2-3-5-7-8-1-9 

 Camino 4:   1-2-5-6-7-8-1-9 

Estos cuatro caminos constituyen el camino básico para el grafo de flujo correspondiente. 
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4.2.1.1.4 Derivar los casos de prueba que fuerzan la ejecución de cada camino.

El último paso es construir los casos de prueba que fuerzan la ejecución de cada camino. Una forma 
de representar el conjunto de casos de prueba es como se muestra en la Tabla 3. 

Número del Camino Caso de Prueba Resultado Esperado 

   

   

   

Tabla 3. Posible representación de casos de prueba para pruebas estructurales 

En el Anexo L se encuentra un posible ejemplo de pruebas de Caja Blanca para que los alumnos 
trabajen con él junto con su solución. En el Anexo N se muestra un ejercicio propuesto para que los 
alumnos se ejerciten en esta técnica de pruebas. El código correspondiente ha sido ya utilizado para 
la evaluación con técnicas estáticas. 

4.2.2 PRUEBAS DE CAJA NEGRA O FUNCIONALES 

También conocidas como Pruebas de Comportamiento, estas pruebas se basan en la especificación
del programa o componente a ser probado para elaborar los casos de prueba. El componente se ve 
como una “Caja Negra” cuyo comportamiento sólo puede ser determinado estudiando sus entradas 
y las salidas obtenidas a partir de ellas. No obstante, como el estudio de todas las posibles entradas 
y salidas de un programa sería impracticable se selecciona un conjunto de ellas sobre las que se 
realizan las pruebas. Para seleccionar el conjunto de entradas y salidas sobre las que trabajar, hay 
que tener en cuenta que en todo programa existe un conjunto de entradas que causan un 
comportamiento erróneo en nuestro sistema, y como consecuencia producen una serie de salidas 
que revelan la presencia de defectos. Entonces, dado que la prueba exhaustiva es imposible, el 
objetivo final es pues, encontrar una serie de datos de entrada cuya probabilidad de pertenecer al 
conjunto de entradas que causan dicho comportamiento erróneo sea lo más alto posible. 

Al igual que ocurría con las técnicas de Caja Blanca, para confeccionar los casos de prueba de Caja 
Negra existen distintos criterios. Algunos de ellos son: 

Particiones de Equivalencia. 

Análisis de Valores Límite. 

Métodos Basados en Grafos. 

Pruebas de Comparación. 

Análisis Causa-Efecto. 

De ellas, las técnicas que estudiaremos son las dos primeras, esto es, Particiones de Equivalencia y 
Análisis de Valores Límite. 
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4.2.2.1 PARTICIONES DE EQUIVALENCIA 

La partición de equivalencia es un método de prueba de Caja Negra que divide el campo de entrada 
de un programa en clases de datos de los que se pueden derivar casos de prueba. La partición 
equivalente se dirige a una definición de casos de prueba que descubran clases de errores,
reduciendo así el número total de casos de prueba que hay que desarrollar.  

En otras palabras, este método intenta dividir el dominio de entrada de un programa en un número 
finito de clases de equivalencia. De tal modo que se pueda asumir razonablemente que una prueba 
realizada con un valor representativo de cada clase es equivalente a una prueba realzada con 
cualquier otro valor de dicha clase. Esto quiere decir que si el caso de prueba correspondiente a una 
clase de equivalencia detecta un error, el resto de los casos de prueba de dicha clase de equivalencia 
deben detectar el mismo error. Y viceversa, si un caso de prueba no ha detectado ningún error, es de 
esperar que ninguno de los casos de prueba correspondientes a la misma clase de equivalencia 
encuentre ningún error. 

El diseño de casos de prueba según esta técnica consta de dos pasos: 

1. Identificar las clases de equivalencia. 

2. Identificar los casos de prueba. 

4.2.2.1.1 Identificar las clases de equivalencia

Una clase de equivalencia representa un conjunto de estados válidos y no válidos para las 
condiciones de entrada de un programa. Las clases de equivalencia se identifican examinando cada 
condición de entrada (normalmente una frase en la especificación) y dividiéndola en dos o más 
grupos. Se definen dos tipos de clases de equivalencia, las clases de equivalencia válidas, que 
representan entradas válidas al programa, y las clases de equivalencia no válidas, que representan 
valores de entrada erróneos. Estas clases se pueden representar en una tabla como la Tabla 4. 

Condición Externa Clases de Equivalencia Válidas Clases de Equivalencia No Válidas 

   

   

   

 Tabla 4. Tabla para la identificación de clases de equivalencia 

En función de cuál sea la condición de entrada se pueden seguir las siguientes pautas identificar las 
clases de equivalencia correspondientes: 

- Si una condición de entrada especifica un rango de valores, identificar una clase de 
equivalencia válida y dos clases no válidas. Por ejemplo, si un contador puede ir de 1 a 999, 
la clase válida sería “1 <= contador <= 999. Mientras que las clases no válidas serían 
“contador < 1” y “contador > 999” 

- Si una condición de entrada especifica un valor o número de valores, identificar una clase 
válida y dos clases no válidas. Por ejemplo, si tenemos que puede haber desde uno hasta 
seis propietarios en la vida de un coche. Habrá una clase válida y dos no válidas: “no hay 
propietarios” y “más de seis propietarios”. 
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- Si una condición de entrada especifica un conjunto de valores de entrada, identificar una 
clase de equivalencia válida y una no válida. Sin embargo, si hay razones para creer que 
cada uno de los miembros del conjunto será tratado de distinto modo por el programa, 
identificar una clase válida por cada miembro y una clase no válida. Por ejemplo, el tipo de 
un vehículo puede ser: autobús, camión, taxi, coche o moto. Habrá una clase válida por 
cada tipo de vehículo admitido, y la clase no válida estará formada por otro tipo de 
vehículo.

- Si una condición de entrada especifica una situación que debe ocurrir, esto es, es lógica, 
identificar una clase válida y una no válida. Por ejemplo, el primer carácter del identificador 
debe ser una letra. La clase válida sería “identificador que comienza con letra”, y la clase 
inválida sería “identificador que no comienza con letra”. 

- En general, si hay alguna razón para creer que los elementos de una clase de equivalencia 
no se tratan de igual modo por el programa, dividir la clase de equivalencia entre clases de 
equivalencia más pequeñas para cada tipo de elementos. 

4.2.2.1.2  Identificar los casos de prueba

El objetivo es minimizar el número de casos de prueba, así cada caso de prueba debe considerar 
tantas condiciones de entrada como sea posible. No obstante, es necesario realizar con cierto 
cuidado los casos de prueba de manera que no se enmascaren faltas. Así, para crear los casos de 
prueba a partir de las clases de equivalencia se han de seguir los siguientes pasos: 

1. Asignar a cada clase de equivalencia un número único. 

2. Hasta que todas las clases de equivalencia hayan sido cubiertas por los casos de prueba, se 
tratará de escribir un caso que cubra tantas clases válidas no incorporadas como sea posible. 

3. Hasta que todas las clases de equivalencia no válidas hayan sido cubiertas por casos de 
prueba, escribir un caso para cubrir una única clase no válida no cubierta. 

La razón de cubrir con casos individuales las clases no válidas es que ciertos controles de entrada 
pueden enmascarar o invalidar otros controles similares. Por ejemplo, si tenemos dos clases válidas: 
“introducir cantidad entre 1 y 99” y “seguir con letra entre A y Z”, el caso 105 1 (dos errores) puede 
dar como resultado 105 fuera de rango de cantidad, y no examinar el resto de la entrada no 
comprobando así la respuesta del sistema ante una posible entrada no válida.  

4.2.2.2 ANÁLISIS DE VALORES LÍMITE 

La experiencia muestra que los casos de prueba que exploran las condiciones límite producen mejor 
resultado que aquellos que no lo hacen. Las condicione límite son aquellas que se hayan en los 
márgenes de la clase de equivalencia, tanto de entrada como de salida. Por ello, se ha desarrollado 
el análisis de valores límite como técnica de prueba. Esta técnica nos lleva a elegir los casos de 
prueba que ejerciten los valores límite.  

Por lo tanto, el análisis de valores límite complementa la técnica de partición de equivalencia de 
manera que: 

- En lugar de seleccionar cualquier caso de prueba de las clases válidas e inválidas, se eligen 
los casos de prueba en los extremos. 
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- En lugar de centrase sólo en el dominio de entrada, los casos de prueba se diseñan también 
considerando el dominio de salida. 

Las pautas para desarrollar casos de prueba con esta técnica son: 

- Si una condición de entrada especifica un rango de valores, se diseñarán casos de prueba 
para los dos límites del rango, y otros dos casos para situaciones justo por debajo y por 
encima de los extremos. 

- Si una condición de entrada especifica un número de valores, se diseñan dos casos de 
prueba para los valores mínimo y máximo, además de otros dos casos de prueba para 
valores justo por encima del máximo y justo por debajo del mínimo. 

- Aplicar las reglas anteriores a los datos de salida. 

- Si la entrada o salida de un programa es un conjunto ordenado, habrá que prestar atención a 
los elementos primero y último del conjunto. 

El Anexo M presenta un ejemplo de prueba de caja negra con Particiones de Equivalencia y 
Análisis de Valores Límite para que los alumnos practiquen con la técnica. En el Anexo O se 
muestra un ejercicio propuesto para que los alumnos ejerciten. El código correspondiente ha sido ya 
utilizado para la evaluación con técnicas estáticas. 

4.2.3 ESTRATEGIA DE PRUEBAS 

La estrategia que se ha de seguir a la hora de evaluar dinámicamente un sistema software debe 
permitir comenzar por los componentes más simples y más pequeños e ir avanzando 
progresivamente hasta probar todo el software en su conjunto. Más concretamente, los pasos a 
seguir son: 

1. Pruebas Unitarias. Comienzan con la prueba de cada módulo. 

2. Pruebas de Integración. A partir del esquema del diseño, los módulos probados se vuelven a 
probar combinados para probar sus interfaces. 

3. Prueba del Sistema. El software ensamblado totalmente con cualquier componente 
hardware que requiere se prueba para comprobar que se cumplen los requisitos funcionales. 

4. Pruebas de Aceptación. El cliente comprueba que el software funciona según sus 
expectativas. 

4.2.4 PRUEBAS UNITARIAS 
La prueba de unidad es la primera fase de las pruebas dinámicas y se realizan sobre cada módulo 
del software de manera independiente. El objetivo es comprobar que el módulo, entendido como 
una unidad funcional de un programa independiente, está correctamente codificado. En estas 
pruebas cada módulo será probado por separado y lo hará, generalmente, la persona que lo creo. En 
general, un módulo se entiende como un componente software que cumple las siguientes 
características: 
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Debe ser un bloque básico de construcción de programas. 

Debe  implementar una función independiente simple. 

Podrá ser probado al cien por cien por separado. 

No deberá tener más de 500 líneas de código. 

Tanto las pruebas de caja blanca como las de caja negra han de aplicarse para probar de la manera 
más completa posible un módulo. Nótese que las pruebas de caja negra (los casos de prueba) se 
pueden especificar antes de que módulo sea programado, no así las pruebas de caja blanca. 

4.2.5 PRUEBAS DE INTEGRACIÓN 
Aún cuando los módulos de un programa funcionen bien por separado es necesario probarlos 
conjuntamente: un módulo puede tener un efecto adverso o inadvertido sobre otro módulo; las 
subfunciones, cuando se combinan, pueden no producir la función principal deseada; la imprecisión 
aceptada individuamente puede crecer hasta niveles inaceptables al combinar los módulos; los datos 
pueden perderse o malinterpretarse entre interfaces, etc. 

Por lo tanto, es necesario probar el software ensamblando todos los módulos probados previamente. 
Ésta es el objetivo de la pruebas de integración.  

A menudo hay una tendencia a intentar una integración no incremental; es decir, a combinar todos 
los módulos y probar todo el programa en su conjunto. El resultado puede ser un poco caótico con 
un gran conjunto de fallos y la consiguiente dificultad para identificar el módulo (o módulos) que 
los provocó. 

En contra, se puede aplicar la integración incremental en la que el programa se prueba en pequeñas 
porciones en las que los fallos son más fáciles de detectar. Existen dos tipos de integración 
incremental, la denominada ascendente y descendente. Veamos los pasos a seguir para cada caso: 

Integración incremental ascendente:  

1. Se combinan los módulos de bajo nivel en grupos que realicen una subfunción específica 

2. Se escribe un controlador (un programa de control de la prueba) para coordinar la entrada y 
salida de los casos de prueba.  

3. Se prueba el grupo 

4. Se eliminan los controladores y se combinan los grupos moviéndose hacia arriba por la 
estructura del programa.  

La Figura 8 muestra este proceso. Concretamente, se forman los grupos 1, 2 y 3 de módulos 
relacionados, y cada uno de estos grupos se prueba con el controlador C1, C2 y C3 respectivamente. 
Seguidamente, los grupos 1 y 2 son subordinados de Ma, luego se eliminan los controladores 
correspondientes y se prueban los grupos directamente con Ma. Análogamente se procede con el 
grupo 3 eliminando el controlador C3 y probando el grupo directamente con Mb. Tanto Ma y Mb se 
integran finalmente con el módulo Mc y así sucesivamente. 
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Figura 8. Integración ascendente 

Integración incremental descendente: 

1. Se usa el módulo de control principal como controlador de la prueba, creando resguardos
(módulos que simulan el funcionamiento de los módulos que utiliza el que está probando) 
para todos los módulos directamente subordinados al módulo de control principal. 

2. Dependiendo del enfoque e integración elegido (es decir, primero-en-profundidad, o 
primero-en-anchura) se van sustituyendo uno a uno los resguardos subordinados por los 
módulos reales. 

3. Se llevan a cabo pruebas cada vez que se integra un nuevo módulo. 

4. Tras terminar cada conjunto de pruebas, se reemplaza otro resguardo con el módulo real. 

La Figura 9 muestra un ejemplo de integración descendiente. Supongamos que se selecciona una 
integración descendiente por profundidad, y que por ejemplo se prueba M1, M2 y M4. Sería 
entonces necesario preparar resguardos para M5 y M6, y para M7 y M3. Estos resguardos se ha 
representado en la figura como R5, R6, R7 y R4 respectivamente. Una vez realizada esta primera 
prueba se sustituiría R5 por M5, seguidamente R6 por M6,  y así sucesivamente hasta probar todos 
los módulos. 



N.Juristo/A. Moreno Pág.45  

M4 R7 M3

M2 R3

M1

R5 R6

M5 M6

M7

Figura 9. Integración descendiente 

Para la generación de casos de prueba de integración, ya sea descendente o ascendente se utilizan 
técnicas de caja negra. 

4.2.6 PRUEBAS DEL SISTEMA 
Este tipo de pruebas tiene como propósito ejercitar profundamente el sistema para verificar que se 
han integrado adecuadamente todos los elementos del sistema (hardware, otro software, etc.) y que 
realizan las funciones adecuadas. Concretamente se debe comprobar que: 

- Se cumplen los requisitos funcionales establecidos. 

- El funcionamiento y rendimiento de las interfaces hardware, software y de usuario. 

- La adecuación de la documentación de usuario. 

- Rendimiento y respuesta en condiciones límite y de sobrecarga. 

Para la generación de casos de prueba de sistema se utilizan técnicas de caja negra. 

Este tipo de pruebas se suelen hacer inicialmente en el entrono del desarrollador, denominadas 
Pruebas Alfa, y seguidamente en el entrono del cliente denominadas Pruebas  Beta.

4.2.7 PRUEBAS DE ACEPTACIÓN 
A la hora de realizar estas pruebas, el producto está listo para implantarse en el entorno del cliente. 
El usuario debe ser el que realice las pruebas, ayudado por personas del equipo de pruebas, siendo 
deseable, que sea el mismo usuario quien aporte los casos de prueba.  

Estas pruebas se caracterizan por: 

- Participación activa del usuario, que debe ejecutar los casos de prueba ayudado por 
miembros del equipo de pruebas. 

- Están enfocadas a probar los requisitos de usuario, o mejor dicho a demostrar que no se 
cumplen los requisitos, los criterios de aceptación o el contrato. Si no se consigue demostrar 
esto el cliente deberá aceptar el producto 

- Corresponden a la fase final del proceso de desarrollo de software. 
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Es muy recomendable que las pruebas de aceptación se realicen en el entorno en que se va a 
explotar el sistema (incluido el personal que lo maneje). En caso de un producto de interés general, 
se realizan pruebas con varios usuarios que reportarán sus valoraciones sobre el producto. 

Para la generación de casos de prueba de aceptación se utilizan técnicas de caja negra. 

4.2.8 PRUEBAS DE REGRESIÓN 
La regresión consiste en la repetición selectiva de pruebas para detectar fallos introducidos durante 
la modificación de un sistema o componente de un sistema. Se efectuarán para comprobar que los 
cambios no han originado efectos adversos no intencionados o que se siguen cumpliendo los 
requisitos especificados. 

En las pruebas de regresión hay que: 

- Probar íntegramente los módulos que se han cambiado. 

- Decidir las pruebas a efectuar para los módulos que no han cambiado y que han sido 
afectados por los cambios producidos. 

Este tipo de pruebas ha de realizarse, tanto durante el desarrollo cuando se produzcan cambios en el 
software, como durante el mantenimiento. 
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5. PRUEBAS ORIENTADAS A OBJETOS 

En las secciones anteriores se ha presentado el proceso de pruebas orientado al concepto general de 
módulo. Sin embargo, en el caso de la orientación a objetos (OO) es el concepto de clase y objeto el 
que se utiliza. Veamos a continuación, algunas particularidades de las pruebas para el caso de la 
OO. 

5.1 PRUEBA DE UNIDAD  
Al tratar software OO cambia el concepto de unidad. El encapsulamiento dirige la definición de 
clases y objetos. Esto significa que cada clase e instancia de clase (objeto) empaqueta los atributos 
(datos) y las operaciones (también conocidas como métodos o servicios) que manipulan estos datos. 
Por lo tanto, en vez de módulos individuales, la menor unidad a probar es la clase u objeto 
encapsulado. Una clase puede contener un cierto número de operaciones, y una operación particular 
puede existir como parte de un número de clases diferentes. Por tanto, el significado de prueba de 
unidad cambia ampliamente frente al concepto general visto antes. 

De esta manera, la prueba de clases para el software OO es el equivalente a la prueba de unidad 
para software convencional. A diferencia de la prueba de unidad del software convencional, la cual 
tiende a centrarse en el detalle algorítmico de un módulo y los datos que fluyen a lo largo de la 
interfaz de éste, la prueba de clases para software OO está dirigida por las operaciones encapsuladas 
en la clase y el estado del comportamiento de la clase. Así, la prueba de una clase debe haber 
probado mediante las correspondientes técnicas de caja blanca y caja negra el funcionamiento de 
cada uno de los métodos de dicha clase. Además, se deben haber generado casos de prueba para 
probar valores representativos de los atributos de dicha clase (esto puede realizarse aplicando la 
técnica de clases de equivalencia y análisis de valores límite). 

5.2 PRUEBA DE INTEGRACIÓN  
Debido a que el software OO no tiene una estructura de control jerárquica, las estrategias 
convencionales de integración ascendente y descendente poseen un significado poco relevante en 
este contexto.  

Generalmente se pueden encontrar dos estrategias diferentes de pruebas de integración en sistemas 
OO. La primera, prueba basada en hilos (o threads), integra el conjunto de clases necesario para 
responder a una entrada o evento del sistema. Cada hilo se integra y prueba individualmente. El 
segundo enfoque para la integración, prueba basada en el uso. Esta prueba comienza la 
construcción del sistema integrando y probando aquellas clases (llamadas clases independientes) 
que usan muy pocas de las clases. Después de probar las clases independientes, se comprueba la 
próxima capa de clases, llamadas clases dependientes, que usan las clases independientes. Esta 
secuencia de capas de pruebas de clases dependientes continúa hasta construir el sistema por 
completo.  

Nótese cómo la prueba basada en hilos proporciona una estrategia más ordenada para realizar la 
prueba que la prueba basada en el uso. Esta prueba basada en hilos, suele aplicarse utilizando los 
diagramas de secuencia de objetos que diseñan cada evento de entrada al sistema.  

Concretamente, se pueden realizar los siguientes pasos para generar casos de prueba a partir de un 
diagrama de secuencias: 
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1. Definir el conjunto de secuencias de mensajes a partir del diagrama de secuencia. 
Cada secuencia ha de comenzar con un mensaje m sin predecesor (habitualmente, 
un mensaje enviado al sistema por un actor), y estará formada por el conjunto de 
mensajes cuya ejecución dispara m.

2. Analizar sub-secuencias de mensajes a partir de posibles caminos condicionales en 
los diagramas de secuencia. 

3. Identificar los casos de prueba que se han de introducir al sistema para que se 
ejecuten las secuencias de mensajes anteriores, en función de los métodos y las 
clases afectadas por la secuencia. Tanto valores válidos como inválidos deberían 
considerarse. 

Nótese cómo el conjunto de casos de prueba puede aumentar exponencialmente si se trabaja sobre 
un sistema OO con un número elevado de interacciones. Por lo tanto, es necesario tener en cuenta 
este factor a la hora de realizar el diseño. 

5.3 PRUEBA DE SISTEMA  
En el nivel de prueba del sistema, los detalles de las conexiones entre clases no afectan. El software 
debe integrarse con los componentes hardware correspondientes y se ha de comprobar el 
funcionamiento del sistema completo acorde a los requisitos. Como en el caso del software 
convencional, la validación del software OO se centra en las acciones visibles del usuario y las 
salidas del sistema reconocibles por éste. Para asistir en la determinación de casos de prueba de 
sistema, el ejecutor de la prueba debe basarse en los casos de uso que forman parte del modelo de 
análisis. El caso de uso brinda un escenario que posee una alta probabilidad con errores encubiertos 
en los requisitos de interacción del cliente. Los métodos convencionales de prueba de caja negra, 
pueden usarse para dirigir estas pruebas.  

5.4 PRUEBA DE ACEPTACIÓN 

La prueba de aceptación en un sistema OO es semejante a la prueba de aceptación en un software 
tradicional. El motivo es que el objetivo de este tipo de prueba es comprobar si el cliente está 
satisfecho con el producto desarrollado y si este producto cumple con sus expectativas, en términos 
de los errores que genera y de la funcionalidad que suministra. Al igual que las pruebas 
convencionales serán los clientes quienes realicen estas pruebas y suministren los casos de prueba 
correspondientes. 
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6. HERRAMIENTAS DE PRUEBA

A continuación se muestran algunas herramientas que permiten automatizar en cierta medida el 
proceso de prueba. 

6.1 HERRAMIENTA PARA EL ANÁLISIS ESTÁTICO DE 
CÓDIGO FUENTE 

Jtest

    

Las características de esta herramienta son las siguientes: 

Jtest comprueba automáticamente la construcción del código fuente ("pruebas de caja 
blanca"), la funcionalidad del código ("pruebas de caja negra"), y mantiene la integridad del 
código (pruebas de regresión). 

Se aplica sobre clases Herram Java y JSP. 

6.2 HERRAMIENTAS PARA PRUEBAS DE CARGA Y STRESS 

OpenLoad Tester        

Las características de esta herramienta son las siguientes:

 OpenLoad Tester es una herramienta de optimización de rendimiento basada en navegador 
para pruebas de carga y stress de sitios web dinámicos. 

Permite elaborar escenarios de ejecución y ejecutarlos de forma repetida, simulando la 
carga de un entorno de producción real de nuestra aplicación como si múltiples usuarios 
estuvieran usándola 

Benchmark Factory       

Las características de esta herramienta son las siguientes:
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 Benchmark Factory es una herramienta de prueba de carga y capacity planning, capaz de 
simular el acceso de miles de usuarios a sus servidores de bases de datos, archivos, internet 
y correo, localizando los posibles cuellos de botella y aislar los problemas relacionados con 
sobrecargas del sistema 

6.3 HERRAMIENTA PARA LA AUTOMATIZACIÓN DE LAS 
PRUEBAS FUNCIONALES 

DataFactory      

 Las características de esta herramienta son las siguientes:

 DataFactory, ayuda a la creación automática de juegos de ensayo o casos de prueba 
basados en la funcionalidad de las aplicaciones (casos de uso), que facilitan la labor de 
tener que crearlos manualmente y típicamente, se utilizan junto a las herramientas de 
pruebas de carga.  

6.4 HERRAMIENTAS DE DIAGNÓSTICO 

PerformaSure          

Las características de esta herramienta son las siguientes:

 PerfomaSure, es una herramienta de diagnóstico de rendimiento para el análisis en 
entornos distribuidos J2EE, que permite el seguimiento de los problemas de rendimiento 
detectados en tiempo real, desde la transacción del usuario final en fase de producción, 
hasta la línea de código fuente que genera el problema.   

Spotlight         
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Las características de esta herramienta son las siguientes:

 Spotlight, en sus versiones para Servidores de Aplicaciones, Servidores Web, Bases de 
datos, Sistemas Operativos, etc. es la herramienta visual para la detección en tiempo real, de 
los cuellos de botella en estos componentes. Una vez que identifica la causa de estos 
problemas, proporciona la información y consejos necesarios, para su resolución.  

6.5 HERRAMIENTA DE RESOLUCIÓN Y AFINADO 

JProbe      

Esta herramienta, permite detectar los 'puntos calientes' de los componentes de una 
aplicación JAVA, tales como el uso de la memoria, el uso del CPU, los hilos de 
ejecución,... y a partir de ellos, bajar al nivel del código fuente que los provoca ofreciendo 
una serie de consejos o buenas prácticas de codificación para la resolución del problema.  


