TECNICAS DE EVALUACION DE SOFTWARE

Version: 12.0
Fecha: 17 de octubre de 2006

Autoras: Natalia Juristo, Ana M. Moreno, Sira Vegas

TABLA DE CONTENIDO

1. INTRODUCCION A LA EVALUACION DE SOFTWARE 4
1.1 ;ESTAMOS CONSTRUYENDO SOFTWARE SIN DEFECTOS?: ESTADO ACTUAL DE LA
PRACTICA ..ottt et ee e ee s et e seesee e eeeese s seeseeeesaet et et eeseeaeeeesseasseessesereeeseeesens 4
1.2 CONTROL DE CALIDAD DEL SOFTWAREoovtitteeeeseeeeeeeeeseeeeeeeeeeeee e ese e ses e eeeeeeese e saeeeene 7

2. EVALUACION DE SOFTWARE Y PROCESO DE DESARROLLO 11

3. TECNICAS DE EVALUACION ESTATICA 15
3.1 BENEFICIOS DE LAS REVISIONESooooorroorromesesoesssssissscinnnnsseesene s 15
3.20BJETIVOS DE LA EVALUACION ESTATICAooooooooiiiiiiiinicnneneeeeeesessee s 16
3.3 TECNICAS DE EVALUACION ESTATICA ..o eee e sese e ees e seesneen 18
BATINSPECCIONES ...t e et ee e e s e e eee e ee e eeeeeee s s ee s e s eeeeseaseeeeseeseeseseeseeneeeens 18

3.4.1 (;QUE SON LAS INSPECCIONES? ...ttt ettt ettt e e e e e st e e e e e et aete s e aaeeessssaseaeeessssateeeesans 18
3.4.2 EL PROCESO DE INSPECCION.......ooveoeeeeeeeererenn
3.4.3 ESTIMACION DE LOS DEFECTOS REMANENTES ...
3.4.4 TECNICAS DE LECTURA ..o
344.1 LECTURA SIN CHECKLISTS Y CON CHECKLISTS
3442 LECTURA POR ABSTRACCION SUCESIVA ..o eeeeee e eeeeeeseeseeseseseesees e sees s e sess s sees s seessssessessessaseans 26
3443 LECTURA ACTIVA DE DISENOo eeieeteeeetee et eee e eeeeees s es e seeseess e eeeeesaesasesseeeesssesessassessesssessaseseesseesssessesasnn 29
3444 LECTURA BASADA EN ESCENARIOS ...ttt e et e et te et e e et e eeae e ente e seaaeensesennsseenneeessaeeenneeenns 30

4. TECNICAS DE EVALUACION DINAMICA
4.1 CARACTERISTICAS Y FASES DE LA PRUEBAooooorirorrioeocccccciccieeseneneseeeee s
4.2 TECNICAS DE PRUEBA ..o

4.2.1 PRUEBAS DE CAJA BLANCA O ESTRUCTURALES
42.1.1 COBERTURA DE CAMINOS ..ottt ettt et ettt e et e ae e eaeeaeetaeeteeesseesssaaeesaeesaesaseesseesseeseenssenssenssesseneeseesnsenes
4.2.2 PRUEBAS DE CAJA NEGRA O FUNCIONALEScoiiiieiiieieeeeeeeeeeeeee oo 39
422.1 PARTICIONES DE EQUIVALENCIAcooiotiietiteetetee ettt ettt ettt ss st ev et esbasse st esse e esaesaesa et s s esassenes 40
4222 ANALISIS DE VALORES LIMITEcooo oottt eeeeee e e e s e seesesees e seesesesees s ses e seesses e ssessessessesssssassessessessesseesenes 41
4.2.3 ESTRATEGIA DE PRUEBAS ...ttt e e e e et e e e et e e e eeaaaaeeeeenatasseeseearaeeeeens
4.2.4 PRUEBAS UNITARIAS.............
4.2.5 PRUEBAS DE INTEGRACION.
4.2.6 PRUEBAS DEL SISTEMAooooiitiiiiieeeeee ettt e e et e e e eeaa e e e e eaae e e e eeaaeeeseeeataseesennnnaeeeeserraneeeens
4.2.7 PRUEBAS DE ACEPTACION......ooeooeeeeeeeeeeeeeeeeeee oo v e e e ves e s eses s s et esesaese s s ssesessseses s ssesesassesesesessesssessesesssseses
4.2.8 PRUEBAS DE REGRESION ..o oo

5. PRUEBAS ORIENTADAS A OBJETOS...... .47
5.1 PRUEBA DE UNIDAD.....oooeoeoeeeeee oo eeeeee e e e e et s s eeeeseeseeeeseaseeseseeseeseseas s esseseeseeeeseseseseas 47
5.2 PRUEBA DE INTEGRACIONoviioreeeieeeeeeeeeeeeee e eeeee e eeseeeeseseeeseseseeesesssaeseereeseeasresesesssesssassesessons 47
5.3 PRUEBA DE SISTEMA ...ttt eeeeeeeeeeveeeeeeee e eeeseeseseseeseeessseesaessssssaeseseesesesssesssesesesssessessssnns 48
5. 4PRUEBA DE ACEPTACION ...t ee e eeeeee e eeee v essesesesesesesesesesstasseesessssesesenseasseesseeseessseeesens 48

6. HERRAMIENTAS DE PRUEBAouuuiiieerrrieieeesesssesssessssssssssessssssssssssessssssssesesssssssssesssssssnes 49
6.1 HERRAMIENTA PARA EL ANALISIS ESTATICO DE CODIGO FUENTEc..oevoveeeeeeeeeereerenn. 49
6.2 HERRAMIENTAS PARA PRUEBAS DE CARGA Y STRESS......eieieeeeeeeeeeeeeeseeseeseesssessessessseenes 49
6.3 HERRAMIENTA PARA LA AUTOMATIZACION DE LAS PRUEBAS FUNCIONALES 50
6.4 HERRAMIENTAS DE DIAGNOSTICOooeteeeeeeeee et eeseeeeeeseeeteseseeesesesesseenee e eesesseeessesseaesesnsenas 50
6.5 HERRAMIENTA DE RESOLUCION Y AFINADO ..o seeseneone 51

ANEXO A. DOCUMENTO DE REQUISITOS PARA EL SISTEMA DE VIDEO ABCcevueueeereeenennnnecees 52

ANEXO B. LISTAS DE COMPROBACION... .62

ANEXO C. LISTAS DE COMPROBACION PARA CODIGO. 66

ANEXO D. PROGRAMA PARA EJERCICIO DE CODIGO... 73

ANEXO E. SOLUCION PARA EL EJERCICIO PRACTICO “COUNT .cucueerirenusesanscsssscssssesssssssssessssesaes 77

N.Juristo/A. Moreno Pag. 2

ANEXOF. PROGRAMA “TOKENS” PARA PRACTICAR LA TECNICA DE ABSTRACCION SUCESIVA

84
ANEXO G. PROGRAMA “SERIES” PARA PRACTICAR CON LA TECNICA DE ABSTRACCION SUCESIVA

90
ANEXO H. EJERCICIO DE LECTURA BASADA EN DISENO.....ccccceerurernnessersanses 95
ANEXOI. EJERCICIO DE LECTURA BASADA EN PRUEBAS. 98
ANEXOJ. EJERCICIO DE LECTURA BASADA EN USO... ..101
ANEXO K. LISTA DE DEFECTOS — SISTEMA DE VIDEO ABC . 104
6.5.1.1 DEFECTOS ..ot s 104
ANEXO L. EJERCICIO DE PRUEBA DE CAJA BLANCAccoevuvreenricsannes ..106
ANEXO M. EJERCICIO DE PRUEBA DE CAJA NEGRA110
ANEXO N. PROGRAM “TOKENS” PARA PRACTICAR CON LA TECNICA DE CAJA BLANCA 113
ANEXO O. PROGRAMA “SERIES” PARA PRACTICAR CON LA TECNICA DE CAJA NEGRA....ccecv.. 117
ANEXO P. MATERIAL PARA LA APLICACION DE LECTURA DE CODIGO . 119
ANEXO Q. MATERIAL PARA LA APLICACION DE LAS PRUEBAS ESTRUCTURALES.....cccovoseenssncsnss 124
ANEXO R. MATERIAL PARA LA APLICACION DE PRUEBAS FUNCIONALES.....ccceeveruesnsesesnesnesneeas 127

N.Juristo/A. Moreno Pag. 3

1. INTRODUCCION A LA EVALUACION DE SOFTWARE

1.1 ¢ESTAMOS CONSTRUYENDO SOFTWARE SIN
DEFECTOS?: ESTADO ACTUAL DE LA PRACTICA

Todos, alguna vez, hemos sufrido algun error informatico, ya sea una factura indebidamente cargada o
la destruccion del trabajo de todo un dia, por culpa de un fallo misterioso en el software. Tales
problemas nacen de la complejidad del software. La extrema dificultad para construir sistemas
software multiplica la probabilidad de que persistan errores ain después de haberse finalizado y
entregado el sistema, manifestandose cuando éste es utilizado por el cliente.

La construccién de un sistema software tiene como objetivo satisfacer una necesidad planteada por un
cliente. ;Como puede saberse si el producto construido se corresponde exactamente con lo que el
cliente deseaba? y ;Como se puede estar seguro de que el producto que ha construido va a funcionar
correctamente?

Desgraciadamente, nuestra capacidad para medir la fiabilidad del software es muy inferior a lo que
seria necesario'. Seria deseable que los informaticos pudieran demostrar matematicamente la
correccion de sus programas, al estilo de los otros ingenieros. Los otros ingenieros recurren a analisis
matematicos para predecir cual serd el comportamiento de sus creaciones en el mundo real. Esa
prediccion permite descubrir defectos antes de que el producto esté operativo. Por desdicha, las
matematicas tradicionales, aptas para la descripcion de sistemas fisicos (los tipos de sistemas tratados
por las otras ingenierias), no son aplicables al universo sintético binario de un programa de ordenador.
Es la matematica discreta, una especialidad mucho menos madura, y casi no estudiada hasta la
aparicion de las computadoras, la que gobierna el campo de los sistemas software.

Dada la imposibilidad de aplicar métodos matematicos rigurosos, el modo que tienen los informaticos
para respaldar la confianza de los programas es la verificacion empirica. La fiabilidad de los
programas ira creciendo a lo largo de este proceso. Se hacen funcionar los programas, observando
directamente su comportamiento y depurandolos cada vez que aparece una deficiencia una vez el
sistema a construir ha sido terminado. Sin embargo, este modo de actuar no proporciona una solucion
definitiva debida, principalmente, a dos razones:

1. Sidescubrimos en el cddigo errores muy graves que afectan a productos anteriores (requisitos,
disefio,...) debemos volver atras en el desarrollo. Sin embargo, estamos ya al final del
proyecto (en la etapa de codificacion), ya se ha gastado casi la totalidad del tiempo y del
presupuesto. ;Qué hacer? ;Entregamos tarde el sistema y repetimos el desarrollo? ;Le
pedimos al cliente un aumento del presupuesto?

2. Por otra parte, la comprobacion que empirica no sirve para garantizar que no hay errores en el
software, puesto que ello depende, por un lado, de la porcion del programa que se esté
ejecutando en el momento de esta comprobacion, y por otro, de las entradas que se le hayan
proporcionado al codigo. Por lo tanto, pueden existir errores en otras partes del programa que
no se ejecuten en ese momento o con otras entradas que no se hayan usado en la prueba.

Por lo tanto, lo recomendable es que producto software vaya siendo evaluado a medida que se va
construyendo. Como veremos posteriormente, se hace necesario llevar cabo, en paralelo al proceso de
desarrollo, un proceso de evaluacion o comprobacion de los distintos productos o modelos que se van
generando, en el que participaran desarrolladores y clientes.

''W. Wayt Gibbs. Software’s Chronic Crisis. Scientific American. Number 218. November 1994.

N.Juristo/A. Moreno Pag. 4

No obstante, la calidad que se puede obtener mediante este procedimiento artesanal es bastante baja.
De ahi que, a pesar de haber sido ensayados rigurosa y sistematicamente, la mayoria de los programas
grandes contengan todavia defectos cuando son entregados. Ello se debe a la complejidad del
software. Un programa de apenas unos centenares de lineas de codigo puede contener decenas de
decisiones, lo que permite millares de rutas de ejecucion alternativas, resultando materialmente
imposible el ensayo exhaustivo de todas las posibles rutas alternativas. Para alcanzar una confianza de
no mas de 10” fallos por hora tendria que ejecutarse un programa durante muchisimos multiplos de
10° horas, esto es, durante muchos multiplos de 100.000 afios”.

Asi pues, la ambicion de conseguir programas perfectos sigue siendo una cima inaccesible. Existe, hoy
por hoy, la imposibilidad practica de conseguir software totalmente libre de defectos’ y, debemos, por
tanto, aceptar las actuales limitaciones que padece la construccion de sistemas software. De hecho,
algunos autores’ sugieren que, dada la entidad no fisica del software, los defectos en los programas
son inherentes a su naturaleza.

Es dificil establecer cual es la cantidad media de defectos que un sistema software “normal” contiene.
Hay estimaciones, como la del Software Engineering Institute’, que dicen que un programador experto
introduce un defecto por cada 10 lineas de cddigo; suponiendo que se detectasen el 99% de los
defectos introducidos (lo cual resulta tremendamente optimista) aun permanecerian 1 defecto por cada
1.000 lineas de codigo (KLOC?).

No obstante, la depuracion de los sistemas software obedece a la ley del rendimiento decreciente. Esto
es, segun se avanza en el proceso de busqueda de defectos, el coste de deteccion de fallos y
eliminacion de las faltas que los provocan empieza a rebasar con mucho las mejoras conseguidas en la
fiabilidad del sistema. Notese que la fiabilidad de un software no se mide como la cantidad de faltas
que quedan en un programa, sino como el tiempo medio entre fallos’. Asi pues, el objetivo de las
técnicas de evaluacion del software no es tanto la eliminacion total de las faltas existentes en los
programas, como la eliminacion de las faltas que provocan fallos frecuentes. Si se persevera durante
muchisimo tiempo en la depuracion de un software, acabamos descubriendo faltas que produciran
fallos tan infrecuentes que su enmienda no incide en la fiabilidad percibida del sistema.

De hecho, hasta el software mas depurado y considerado de alta fiabilidad contiene defectos
remanentes. Edward N. Adams de IBM analizé empiricamente’ los “tamafios” de las faltas en una base
de datos de cobertura mundial que suponia el equivalente de miles de afios de uso de un sistema
informatico particular. El descubrimiento mas extraordinario consistié en que alrededor de la tercera
parte de las faltas contenidas en un programa son quinquemilenarias. Esto es, faltas que producirian un
fallo tan so6lo una vez cada 5.000 afios. Estas faltas excepcionales sumaban una porcion considerable
del total de faltas remanentes, pues las faltas responsables de de fallos mas frecuentes habian sido
descubiertas y consiguientemente eliminadas durante la fase de evaluacion y en los primeros meses de
operacion del sistema. Obviamente, emplear tiempo en detectar faltas que producen fallos cada mas
alla de 75 afios es malgastar recursos.

2 Bev Littlewood and Lorenzo Strigini. The Risks of Software. Scientific American. Volume 268, Number 1,
January, 1993

? Y. Huang, P. Jalote and C. Kintala. Two Techniques for Transient Software Error Recovery. Lecture Notes in
Computer Science, Vol. 774, pages 159-170. Springer Verlag, Berlin, 1994.

* Software Engineering Institute. Information Week, Jan. 21, 2002
S KLOC es el acronimo inglés de Kilo Lines Of Code, esto es, 1.000 lineas de codigo.

6 Una falta en el codigo es la causante de un fallo en el funcionamiento del sistema. Los fallos se perciben como
errores por los usuarios del sistema. Las faltas, mientras no se manifiestan como fallo durante el
funcionamiento del sistema, no pueden ser apreciadas por los usuarios. El término defecto se utiliza cuando no
es necesario la exactitud de diferencias entre falta y fallo.

" E. Adams. Optimizing Preventive Service of Software Products. IBM Research J., vol. 28, no. 1, pages. 2-14,
1984.

N.Juristo/A. Moreno Pag. 5

Si hablamos de valores reales, en lugar de estimaciones, unos buenos ejemplos de cudntos fallos son
“normales” en un software pueden serlo los sistemas operativos. La tasa de defectos de Linux es 0,1
defectos/KLOC®. Las distintas versiones de Unix tienen entorno a 0,6-0,7 defectos/KLOC®. Los
sistemas operativos con interfaz grafico como Windows 95 o MacOS poseian una tasa de
defectos/KLOC tan elevada que fallaban cada tres horas, o incluso menos, de funcionamiento
ininterrumpido’. Otro ejemplo, Siemens sufrié una tasa de 6-15 defectos /KLOC en el desarrollo de
alguno de sus sistemas operativos'.

Fuera del ambito de los sistemas operativos existen pocas, aunque elocuentes, referencias a las tasas
de defectos del software. Asi, Unisys alcanzo una tasa de 2-9 defectos/KLOC en el desarrollo de
software de comunicaciones. IBM, en el desarrollo normal de software, puede llegar a sufrir una tasa
de 30 defectos/KLOC. Como se ve la variabilidad entre unos casos y otros es muy alta, lo que impide
sacar reglas sobre qué es “normal”

Incluso utilizado técnicas muy avanzadas (las que se usan en sistemas de alto riesgo como la conocida
Cleanroom Development'') es imposible lograr un software totalmente libre de defectos. Asi, por
ejemplo, la misma IBM no consiguio6 rebajar su tasa de defectos de 2,3-3,4 defectos/KLOC utilizando
la técnica Cleanroom".

La UK Civil Aviation obtuvo una tasa de defectos de 0,81 / KLOC en el desarrollo del sistema de
control de trafico aéreo del Reino Unido. Noétese que, en este caso, la necesidad de fiabilidad y
robustez del sistema es enorme y, sin embargo, casi se alcanzo 1 defecto/KLOC, lo que parece indicar
que 1 puede considerarse el limite inferior de la tasa de defectos alcanzable. Sin embargo, en otros
casos de sistemas software también criticos y que requieren programas especialmente fiables, se ha
superado con creces este limite. Asi, segin los datos publicados hasta la fecha, la NASA" ha sufrido
tasas de defectos en el rango 4-12 defectos /KLOC.

Cabe preguntarse, en consecuencia, qué tasa de defectos debe considerarse normal en un proyecto de
desarrollo. Existen autores que afirman que es habitual encontrar en el software comercial entre 25-30
defectos/KLOC'. No obstante, aplicando una vision exigente tenemos que:

e Lo mejor que se puede conseguir es 0,5-1 defectos/KLOC

e Enun software comercial, es esperable encontrar entre 3-6 defectos/KLOC

¥ Stephen Shankland CNET News.com February 19, 2003

° L. Hatton. Keynote presentation, COMPASS’97, 16-19 June, 1997. http://guinness.cs.stevens-

tech.edu/~lbernste/presentations/Defects_ala Hatton.ppt

0 L. Hatton. Programming Languages and Safety-Related Systems. Proc. Safety-Critical Systems Symp.,
Springer-Verlag, New York, 1995, pp. 48-64, citado en S. L. Pfleeger and L. Hatton. Investigating the
Influence of Formal Methods. IEEE Computer, Volume 30, Issue 2 (February 1997), pp. 33-43.

"' R. C. Linger. Cleanroom Process Model. IEEE Software, Volume 11, issue 2 (March 1994), pp 50-58.

12 Cleanroom Development es una de las mas depuradas, avanzadas y contrastada para desarrollar sistemas
software con baja tasa de defectos. La razéon de su no amplia utilizacion es su altisimo coste, que hace
dispararse los costos de los proyectos. Asi pues, tnicamente se aplica cuando el cliente lo exige y acepta el
aumento que produce en el precio del desarrollo.

3 La NASA es considerado uno de los centros de desarrollo de software mas avanzado a nivel mundial. Durante
aflos sus investigaciones en el Software Engineering Laboratory, en Maryland EE.UU, han marcado
tendencias en la construccion de software. La razon para esto es clara: los fallos en los vehiculos de la NASA
son irreversibles, pues no hay opcion para que un desarrollador se acerque al sistema y resuelva el problema.
En otras palabras, no puede permitirse el lujo de tener fallos.

"' M. Dyer. The Cleanroom Approach to Software Quality. John Wiley & Sons, New York, 1992.

N.Juristo/A. Moreno Pag. 6

e Puede considerarse que un software posee alta calidad cuando su tasa de defectos es menor de
15 defectos/KLOC.

1.2 CONTROL DE CALIDAD DEL SOFTWARE

El interés por la calidad crece de forma continua, a medida que los clientes se vuelven mas selectivos
y comienzan a rechazar los productos poco fiables o que realmente no dan respuesta a sus necesidades.

Como primera aproximacion es importante diferenciar entre la calidad del PRODUCTO software y la
calidad del PROCESO de desarrollo. Las metas que se establezcan para la calidad del producto van a
determinar las metas a establecer para la calidad del proceso de desarrollo, ya que la calidad del
producto va a estar en funcion de la calidad del proceso de desarrollo. Sin un buen proceso de
desarrollo es casi imposible obtener un buen producto.

También es importante destacar que la calidad de un producto software debe ser considerada en todos
sus estados de evolucion a medida que avanza el desarrollo de acuerdo al ciclo de vida seleccionado
para su construccion (especificaciones, disefio, cddigo, etc.). No basta con tener en cuenta la calidad
del producto una vez finalizado, cuando los problemas de mala calidad ya no tienen solucion o la
solucion es muy costosa.

Los principales problemas a los que se enfrenta el desarrollo de software a la hora de tratar la calidad
de un producto software son la definicion de calidad y su comprobacion:

Con respecto a la definicion de la calidad del software: ;Es realmente posible encontrar un conjunto de
propiedades en un producto software que nos den una indicacion de su calidad? Para dar respuesta a
estas preguntas aparecen los Modelos de Calidad. En los Modelos de Calidad, la misma se define de
forma jerarquica. Resuelven la complejidad mediante la descomposicion. La calidad es un concepto
que se deriva de un conjunto de sub-conceptos.

En el caso de la calidad del software, el término es dificil de definir. Con el fin de concretizar a qué
nos referimos con calidad de un sistema software, se subdivide en atributos:

e Funcionalidad — Habilidad del software para realizar el trabajo deseado.
e Fiabilidad — Habilidad del software para mantenerse operativo (funcionando).

e Eficiencia — Habilidad del software para responder a una peticion de usuario con la
velocidad apropiada.

e Usabilidad — Habilidad del software para satisfacer al usuario.

e Mantenibilidad — Habilidad del software para poder realizar cambios en ¢l facilmente y
con una adecuada proporcién cambio/costo.

e Portabilidad — Habilidad del software para operar en diferentes entornos informaticos.

A su vez, cada una de estas caracteristicas del software puede subdividirse en atributos atin mas
concretos. La Tabla 1 muestra una posible subdivision. Aunque existen muchas otras
descomposiciones de la calidad del software, ésta es una de las mas aceptadas.

N.Juristo/A. Moreno Pag. 7

CHARACTERISTICS AND

SUBCHARACTERISTICS DESCRIPTION
| Functionality Characteristics relating to achievement of the basic purpose for which the software is being engineered

Suitability The presence and appropriateness of a set of functions for specified tasks
Accuracy The provision of right or agreed results or effects
Interoperability Software’s ability to interact with specified systems
Security Ability to prevent unauthorized access, whether accidental or deliberate, to programs and data
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols.

Reliability Characteristics relating to capability of software to its level of performance under stated conditions for a stated period of time
Maturity Attributes of software that bear on the frequency of failure by faults in software

Fault tolerance

Ability to maintain a specified level of performance in cases of software faults or unexpected inputs

Recoverabiltiy

Capability and effort needed to re-establish level of performance and recover affected data after possible failure

Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Usability Characteristics relating to the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users

Understandability

The effort required for a user to recognize the logical concept and its applicability

Learnability

The effort required for a user to learn its application, operation, input and output

Operability The ease of operation and control by users
Attractiveness The capability of the software to be attractive to the user
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Efficiency Characteristics related to the relationship between the level of performance of the software and the of resources used, under stated diti

Time behavior

The speed of response and processing times and throughput rates in performing its function

Resource utilization

The amount of resources used and the duration of such use in performing its function

Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
PP, Characteristics related to the effort needed to make modifications, including corrections, impr or ptation of software to changes in
Maintainability N . . e .
envire requirements and functional sp ions

Analyzability

The effort needed for diagnosis of deficiencies or causes of failures, or for identification parts to be modified

Changeabilit

The effort needed for modification fault removal or for environmental change

Stabilit The risk of unexpected effect of modifications
Testability The effort needed for validating the modified software
Compliance Adherence to application-related standards, conventions, regulations in laws and protocols
Portability Characteristics related to the ability to transfer the software from one organization or hardware or software environment to naother
Adaptability The opportunity for its adaptation to different specified environments

Installability

The effort needed to install the software in a specified environment

Co-existence

The capability of a software product to co-exist with other independent software in common environment

Replaceabilit

The opportunity and effort of using it in the place of other software in a particular environment

Compliance

Adherence to application-related standards, conventions, regulations in laws and protocols

Tabla 1. Descomposicién de la calidad del software por ISO 9126-1998

N.Juristo/A. Moreno

Pag. 8

Independientemente de la descomposicion de calidad que se elija, el nivel de propension de faltas
de un sistema software afecta siempre a varios de los atributos de calidad. En particular, fiabilidad y
funcionalidad son siempre los mas afectados. No obstante, no existe una relacion bien establecida
entre las faltas y la fiabilidad y funcionalidad. O dicho de otro modo, entre las faltas y los fallos.
Todas las faltas de un producto software no se manifiestan como fallos. Las faltas se convierten en
fallos cuando el usuario de un sistema software nota un comportamiento erréoneo. Para que un
sistema software alcance un nivel alto de calidad se requiere que el nimero de fallos sea bajo. Pero
para mantener los fallos a niveles minimos, las faltas necesariamente deben también estar en niveles
minimos.

Resumiendo, la calidad es dificil de definirse. Para facilitar su comprension la calidad se ha
descompuesto en atributos. Controlar y corregir las faltas existentes en un producto software afecta
positivamente algunos atributos de calidad. En particular, si se trabaja en detectar y eliminar las
faltas y los fallos, la funcionalidad y la fiabilidad mejoran.

En términos generales, se pueden distinguir dos tipos de evaluaciones durante el proceso de
desarrollo: Verificaciones y Validaciones. Segun el IEEE Std 729-1983 éstas se definen como:

o Verificacion: Proceso de determinar si los productos de una cierta fase del desarrollo de
software cumplen o no los requisitos establecidos durante la fase anterior.

e Validacion: Proceso de evaluacion del software al final del proceso de desarrollo para
asegurar el cumplimiento de las necesidades del cliente.

Asi, la verificacion ayuda a comprobar si se ha construido el producto correctamente, mientras que
la validacion ayuda a comprobar si se ha construido el producto correcto. En otras palabras, la
verificacion tiene que ver tipicamente con errores en la transformacion entre productos (de los
requisitos de disefio, del disefio al codigo, etc.). Mientras que la validacion tiene que ver con errores
al malinterpretar las necesidades del cliente. Asi la unica persona que puede validar el software, ya
sea durante su desarrollo con una vez finalizado, es el cliente, ya que sera quién pueda detectar si se
interpretaron adecuadamente.

La calidad siempre va a depender de los requisitos o necesidades que se desee satisfacer. Por eso, la
evaluacion de la calidad de un producto siempre va a implicar una comparacion entre unos
requisitos preestablecidos y el producto realmente desarrollado.

El problema es que, por lo general, una parte de los requisitos van a estar explicitos (se encontraran
en la ERS - Especificacion de Requisitos Software, tanto los funcionales como otros requisitos),
pero otra parte van a quedar implicitos (el usuario sabe lo que quiere, pero no siempre es capaz de
expresarlo). Hay que intentar que queden implicitos la menor cantidad de requisitos posible. No se
podra conseguir un producto de buena calidad sin una buena ERS.

Teniendo esto en cuenta, en un producto software vamos a tener diferentes visiones de la calidad:
e Necesaria o Requerida: La que quiere el cliente.

e Programada o Especificada: La que se ha especificado explicitamente y se intenta
conseguir.

e Realizada: La que se ha conseguido.

N.Juristo/A. Moreno Pag.9

Nuestro objetivo es conseguir que las tres visiones coincidan. A la interseccion entre la calidad
Requerida y la calidad Realizada se le 1lama calidad Percibida, y es la tinica que el cliente valora.
Toda aquella calidad que se realiza pero no se necesita es un gasto inutil de tiempo y dinero.

Tanto para la realizacion de verificaciones como de validaciones se pueden utilizar distintos tipos
de técnicas. En general, estas técnicas se agrupan en dos categorias:

e Técnicas de Evaluacion Estaticas: Buscan faltas sobre el sistema en reposo. Esto es,
estudian los distintos modelos que componen el sistema software buscando posibles faltas
en los mismos. Asi pues, estas técnicas se pueden aplicar, tanto a requisitos como a
modelos de analisis, disefio y codigo.

e Técnicas de Evaluacion Dinamicas: Generan entradas al sistema con el objetivo de detectar
fallos, cuando el sistema ejecuta dichas entradas. Los fallos se observan cuando se detectan
incongruencias entre la salida esperada y la salida real. La aplicacion de técnicas dinamicas
es también conocida como pruebas de software o testing y se aplican generalmente sobre
codigo puesto que es, hoy por hoy, el tinico producto ejecutable del desarrollo.

Veamos en la siguiente seccion como estas técnicas de evaluacion han de aplicarse durante todo el
proceso de desarrollo. Pero antes recordemos que todo proceso de evaluacion ademas de la posible
deteccion de defectos conlleva un proceso de depuracion, esto es la correccion de los mismos.
Ambas tareas (deteccion y correccion) pueden realizarse por una misma persona o por personas
distintas segun la organizacion y el modelo de desarrollo sobre el que se esté aplicando la técnica.
Las técnicas de evaluacion, tanto las estaticas como las dinamicas, no aportan ayuda en la
correccion de los defectos encontrados.

Bien es cierto, que en el caso de las técnicas estaticas, dado que detectan faltas su correccion es mas
directa. Mientras que las técnicas dinamicas, como se centran en los fallos su proceso de depuracion
asociado es mucho mas complejo, puesto que se debe, primero, buscar la falta que provoca el fallo
(lo cual, no es en absoluto inmediato como sabe cualquier programador) y posteriormente
corregirlo.

N.Juristo/A. Moreno Pag.10

2. EVALUACION DE SOFTWARE Y PROCESO DE
DESARROLLO

Tal como se ha indicado anteriormente, es necesario evaluar el sistema software a medida que se va
avanzando en el proceso de desarrollo de dicho sistema. De esta forma se intenta que la deteccion
de defectos se haga lo antes posible y tenga menor impacto en el tiempo y esfuerzo de desarrollo.
Ahora bien ;como se realiza esta evaluacion?

Las técnicas de evaluacion estatica se aplican en el mismo orden en que se van generando los
distintos productos del desarrollo siguiendo una filosofia fop-down. Esto es, la evaluacion estatica
acompana a las actividades de desarrollo, a diferencia de la evaluacion dinamica que Gnicamente
puede dar comienzo cuando finaliza la actividad de codificacion, siguiendo asi una estrategia
botom-up. La evaluacion estatica es el inico modo disponible de evaluacion de artefactos para las
primeras fases del proceso de desarrollo (analisis y disefio), cuando no existe codigo. Esta idea se
muestra en la Figura 1 en la que como se observa la evaluacion estatica se realiza en el mismo
sentido en que se van generando los productos del desarrollo de software, mientras que la dindmica
se realiza en sentido inverso.

Necesidad del Codigo
Usuario Aceptado

Codificacién

Figura 1. Abstraccion de la Relaciéon entre Evaluacion y Proceso Software

Mas concretamente, la Figura 2 muestra en detalle la aplicacion de las técnicas estaticas y
dindmicas para evaluar software. La evaluacion estatica (conocida con el nombre genérico de
Revisiones) se realiza en paralelo al proceso de construccion, constando de una actividad de
evaluacion emparejada con cada actividad de desarrollo. Es decir, la actividad de Definicion de
Requisitos de Usuario va acompafiada de una actividad de Revision de Requisitos de Usuario, la
actividad de Definicion de Requisitos Software va emparejada con su correspondiente actividad de
revision y asi, sucesivamente.

Las actividades de revision marcan el punto de decision para el paso a la siguiente actividad de
desarrollo. Es decir, la actividad de requisitos interactiia con la actividad de revision de requisitos
en un bucle de mejora iterativa hasta el momento en que la calidad de los requisitos permite
abordar la subsiguiente fase de desarrollo. Lo mismo ocurre con el disefio arquitectonico: sufrira
una mejora iterativa hasta que su nivel de calidad permita pasar al disefio detallado y asi,
sucesivamente. Notese que esto también ocurre en la fase de codificacion. La actividad siguiente a

N.Juristo/A. Moreno Pag.11

la de implementacion es la fase de pruebas unitarias. No obstante, antes de pasar a ella, los
programas deberan evaluarse estaticamente. Del mismo modo que se ha hecho con los otros
productos.

Necesidad del

\Usuario

Requisitos del .
Usuario Definicién de

Requisitos de
Usuario

Codigo
Aceptado

Pruebas de
Aceptacion

Revision de
Requisitos de
Usuario

Codigo instalado
en hw de usuario y
probado

Requisitos del
Usuario
Revisados

Definicién de Pruebas de
Requisitos del Requisitos Sistema
Software Software
Revision de /
Requisitos de Cédigo con la
Software Requisitos del interaccion entre

Software médulos probada

evisados

Pruebas de
Integracién

Disefio de la
Arquitectura

Disefio
Arquitectéinico

Cadigo con los
médulos probados

Pruebas de
Unidad

Cadigo
Revisado

Revision del
Disefio

Disefio
Arquitectonico itectoini

q
Revisado L
Disefio
. Detallado
Disefio
Detallado

Revision del
Disefio
Detallado

Disefio
Detallado

T —Redmo | Codificacion

M

Cédigo
Revisado

Revision del
Codigo

Figura 2. Modelo en V de Evaluacién de Software

En otras palabras, las actividades de revision acompafian las actividades del modelo de desarrollo
de software que guia el proyecto. En los modelos de desarrollo de software tradicionales, las
actividades de evaluacion tanto estaticas como dinamicas tienen una inmersion clara dentro de cada
una de las fases del proceso. Es decir, se puede diferenciar claramente donde se introducen las
actividades de revision pues cada fase de desarrollo esta claramente diferenciada. En modelos de
proceso de software recientes como es el caso de los Modelos de Proceso Agiles y particularmente
en XP, no sucede claramente de la misma manera. La necesidad de hacer liberaciones de codigo a
intervalos cortos de tiempo (totalmente probadas) permite involucrar la evaluacion en cada una de
las actividades diarias que acompaiian el proceso de desarrollo. Las pruebas de aceptacion, por
ejemplo son pruebas definidas por el cliente con ayuda de un miembro del equipo de desarrollo bajo
el rol de Tester o Verificador. Estas buscan medir la funcionalidad de la caracteristica seleccionada
por el cliente para ser implementada en esa liberacion. Las pruebas se establecen como fundamento
del desarrollo, del control de cambios y del trabajo conjunto del cliente con el desarrollador a través
de todo el proceso de desarrollo.

N.Juristo/A. Moreno Pag.12

En general y por tanto, las actividades de evaluacion estatica constituyen los puntos de control o
revision utilizados por los gestores de proyectos y las organizaciones para evaluar tanto la calidad
de los productos como el progreso del proyecto. Es decir, las actividades de revision son una
herramienta de control para el producto software.

Una vez realizadas estas revisiones se procede con la evaluacion dindmica, que como ya se ha
indicado se realiza sobre el codigo. Aunque mas adelante se estudiaran en detalle los distintos tipos
de pruebas dinamicas, se puede indicar que la primera prueba a realizar es la denominada Prueba de
Unidad en la que se buscan errores en los componentes mas pequefios del programa (modulos).
Estos errores se detectan cuando dichos componentes no actian como se ha especificado en el
disefio detallado.

En el caso de XP, a consecuencia de la refactorizacion, es necesario correr una sesion de pruebas
para verificar que, los cambios no han afectado el comportamiento del sistema, es decir, que no han
introducido defectos. En la “Programacion por Pares” (uno de los principios de XP), todo el codigo
debe escribirse por pares de programadores. En forma conjunta, dos personas escriben codigo
sentados frente a un ordenador, turnandose en el uso del raton y el teclado. Mientras uno piensa
desde un punto de vista mas estratégico y realiza lo que podria llamarse codigo en tiempo real, el
otro programador escribe directamente el codigo, alternandose en los roles varias veces al dia. Las
“Pruebas de Unidad” son escritas por cada par de programadores cuando se escribe el codigo. Las
pruebas se ejecutan bajo un proceso de integracion y construccion continua que brinda una
plataforma estable para el desarrollo.

Seguidamente, se prueban los distintos componentes que constituyen el software en la denominada
Prueba de Integracion. Esta prueba estd orientada a detectar fallos provocados por una incorrecta
(no acorde con la especificacion de disefio de alto nivel) comunicacion entre modulos. El software
se puede ejecutar en un contexto hardware concreto, por lo que la Prueba de Sistema es la que se
encarga de buscar errores en este ensamblaje sofware/hardware. Finalmente, el usuario ha de
realizar la Prueba de Aceptacion final sobre el sistema completo.

Para XP, el principio de “Pruebas de Cliente”, consiste en que el cliente define una o mas pruebas
de aceptacion. Estas pruebas se automatizan para mostrar que la caracteristica que el cliente desea
esta funcionando correctamente. El equipo construye esas prucbas y las usa para probarse asi
mismos y para mostrarle al cliente que la caracteristica ha sido implementada correctamente. La
automatizacion de las pruebas es importante puesto que para XP, la liberacion de codigo en cortos
plazos de tiempo es indispensable. Por ello, las pruebas estaticas al codigo no vendrian siendo la
mejor opcion.

Notese como la evaluacion de los productos software mediante revisiones permite contar con una
estimacion temprana de la calidad con que se esta llevando a cabo el desarrollo. Esto es asi porque
las revisiones encuentran faltas, pero la cantidad de faltas encontradas en un producto dan una idea
de las faltas que aun pueden quedar asi como de la calidad del trabajo de desarrollo de dicho
producto. La experiencia parece indicar que donde hay un defecto hay otros. Es decir, la
probabilidad de descubrir nuevos defectos en una parte del software es proporcional al numero de
defectos ya descubiertos. Es en este principio sobre el que se basan los métodos de estimacion de
los defectos que quedan en un software; ya sean los modelos de fiabilidad (que utilizan como
entrada los fallos encontrados durante las pruebas) ya sean los métodos de estimacion del contenido
de faltas (que utilizan como entrada las faltas encontradas mediante revisiones). No obstante, es
gracias a la evaluacion estatica que se puede realizar esta estimacion de la calidad del software de
manera temprana, puesto que los modelos de fiabilidad requieren el codigo ya desarrollado para dar
una indicacion de los posibles fallos que quedan remanentes en dicho codigo.

N.Juristo/A. Moreno Pag.13

En XP, con el principio de “Propiedad Colectiva de Codigo”, un par de programadores pueden
mejorar un codigo a la vez. Esto significa que, todo el cddigo en general obtiene el beneficio de la
atencion de muchos programadores. Esto incrementa la calidad del c6digo y disminuye los defectos.

Asi pues, la importancia de las técnicas estaticas de evaluacion a la hora de controlar el nivel de
calidad con el que se esta llevando a cabo el desarrollo es crucial. Los modelos que utilizan los
datos de las técnicas de testing, ayudan a predecir la fiabilidad del software que se estd entregando
(cuantas fallos quedan en el sistema sin encontrar), pero poco se puede hacer ya, excepto seguir
probando el sistema hasta elevar el nivel de fiabilidad del mismo. Sin embargo, la estimacion de
faltas que atin quedan en un producto utilizando datos de las revisiones permite dos acciones que
ayudan a prevenir futuros defectos en el proyecto:

Seguir revisando el producto para disminuir el nimero de faltas remanentes. Por tanto
esta deteccion temprana previene encontrar estas faltas en estadios mas avanzados del
desarrollo. Es decir, la falta que detectemos en los requisitos estaremos evitando
contagiarla al disefio y al codigo.

Tomar medidas correctivas del desarrollo si las estimaciones indican que se esta
llevando a cabo un trabajo pobre. Es decir, si las estimaciones de faltas remanentes
indican que un determinado producto contiene mas faltas de las habituales, algo se esta
haciendo mal (hay problemas en el equipo de desarrollo, algin miembro del equipo
tiene problemas que esta afectando a su trabajo, hay problemas con las técnicas que se
estan utilizando, quizas el equipo no las conoce bien, etc.) y deben tomarse acciones
que remedien o palien estos problemas antes de que afecten al resultad final del
proyecto.

En las secciones 3 y 4 se detallan las técnicas estaticas y dinamicas respectivamente.

N.Juristo/A. Moreno Pag.14

3. TECNICAS DE EVALUACION ESTATICA

3.1 BENEFICIOS DE LAS REVISIONES

La razon para buscar defectos en productos tempranos es porque éstos se traducen en defectos en el
producto final. Es decir, defectos en los requisitos se traduciran en defectos en el sistema final.
Veamos una analogia con la arquitectura de edificios. Si en un plano el color de una linea indica su
significado, una confusion en el color se traducira en un error en el edificio. Por ejemplo, si el azul
indica tuberias de agua y el amarillo cables eléctricos y el arquitecto comete un error usando el azul
en una conduccion eléctrica, los electricistas que usen el plano como guia para su trabajo no
colocaran cables eléctricos mientras que los fontaneros colocaran tuberias de agua donde no debian
ir. El plano de un edificio es el artefacto equivalente al disefio de un producto software. Si un disefio
contiene defectos, seguramente estos defectos se trasmitirdn al codigo cuando los programadores
usen ese disefio como guia para su trabajo.

La deteccion temprana de errores acarrea grandes beneficios. Si las revisiones Unicamente se
aplican al c6digo mejoran la calidad y producen ahorros en los costos del proyecto. Pero los ahorros
son mayores si se inspeccionan artefactos tempranos del desarrollo. Estudiando los resultados
publicados sobre ahorros con las revisiones, puede afirmarse que la utilizacion de inspecciones de
codigo produce un ahorro del 39% sobre el coste de detectar y corregir defectos, frente a
unicamente utilizar la evaluacion dinamica. Sin embargo, el ahorro es del 44% si se inspecciona
también el disefio.

La experiencia demuestra que entre el 30% y el 70% de los defectos, de disefio y codigo son
detectados por las técnicas estaticas. Esto supone un gran ahorro, pues la correccion es mas facil y
menos costosa durante la evaluacion estatica que durante la dindmica. Notese que cuando durante la
evaluacion dinamica del sistema se detecta un fallo en un programa, lo que se detecta es el fallo, no
la falta que lo provoca. Es decir, tras la deteccion del fallo, se requiere una labor de localizacion en
el programa de la falta que provocé el fallo. Sin embargo, con las técnicas estaticas, lo que se
detecta son directamente faltas. Por tanto, una vez detectada, se puede pasar a la fase de correccion.
Es decir, desaparece la tarea de localizacion de la falta. Esto significa, que las técnicas estaticas son
mas baratas por falta que las dinamicas.

Las revisiones también proporcionan beneficios mas generales. Entre éstos se pueden citar estan:

= Evaluacion del progreso del proyecto

= Potencia las capacidades de los participantes

= Mejoran la comunicacion entre el equipo de desarrollo, aumentando su motivacion,
pues los productos pasan a ser documentos publicos.

= Proporciona aprendizaje, retroalimentacion y prevencion

= Forma y educa a los participantes

En el caso concreto de las revisiones de codigo, éstas, ademas, permiten localizar secciones criticas,
lo que permitira dedicar un mayor esfuerzo a ellas en la fase de pruebas.

N.Juristo/A. Moreno Pag.15

3.2 OBJETIVOS DE LA EVALUACION ESTATICA

La evaluacion estatica de los distintos artefactos o productos que se generan en el desarrollo de
software (especificacion de requisitos, modelos conceptuales, disefio, cddigo, etc.) pretende
comprobar su calidad.

La calidad significa una cosa distinta para cada producto, precisamente porque son artefactos
distintos. Del mismo modo que la calidad de un plano y la calidad de una casa significa cosas
distintas. En un plano de un futuro edificio se desea que sea claro (se entienda suficientemente bien
como para servir de guia a la construccion del edificio), que sea correcto (por ejemplo, que las
lineas que identifican paredes indiquen, a escala, efectivamente el lugar donde se desea que vayan
las paredes), que no tenga inconsistencias (por ejemplo, entre las distintas hojas que forman el
plano; si una pagina se focaliza, digamos, en una habitacién que en otra pagina aparecia solo sus
cuatro paredes, que las medidas de las lineas en ambas paginas se correspondan con la misma
medida de la realidad), etc.. Sin embargo, de una casa se espera que sea robusta (por ejemplo, que
no se caiga), usable (por ejemplo, que los peldafios de las escaleras no sean tan estrechos que
provoquen caidas) etc. Por tanto, cuando se esté evaluando estaticamente un producto software, es
importante que el evaluador tenga en mente qué tipo de defectos estd buscando y cual seria un
producto de ese tipo de calidad adecuada. Digamos que si uno no sabe lo que busca (por ejemplo,
inconsistencias al revisar la calidad de un plano) es dificil que lo encuentre, aunque lo tenga delante.

Los defectos que se buscan al evaluar estaticamente los productos software son:
e Para los requisitos:

o Correccion. Los requisitos especifican correctamente lo que el sistema debe
hacer. Es decir, un requisito incorrecto es un requisito que no cumple bien su
funcion. Puesto que la funcion de un requisito es indicar qué debe hacer el
sistema, un requisito incorrecto sera aquel que indica incorrectamente lo que
debe hacer el sistema. Por ejemplo: el algoritmo indicado para hacer un
calculo estd mal; dice que algo debe eliminarse cuando en realidad debe
guardarse; etc. En otras palabras, un requisito incorrecto no se corresponde con
lo acordado o adecuado; contiene un error.

o Complecion. Especificacion completamente el problema. Esta especificado
todo lo que tiene que hacer el sistema y no incluye nada que el sistema no deba
hacer. En dos palabras: no falta nada; no sobra nada

o Consistencia. No hay requisitos contradictorios.

o Ambigiiedad. Los requisitos no pueden estar sujetos a interpretacion. Si fuese
asi, un mismo requisito puede ser interpretado de modo distinto por dos
personas diferentes y, por tanto, crear dos sistemas distintos. Si esto es asi, los
requisitos pierden su valor pues dejan de cumplir su funcion (indicar qué debe
hacer el sistema). Las ambigiiedades provocan interpretacion por parte de la
persona que use o lea los requisitos. Por tanto, una especificacion debe carecer
de ambigiiedades.

o Claridad. Se entiende claramente lo que esta especificado.

e Para el diseiio:

N.Juristo/A. Moreno Pag.16

o Correccion. El disefio no debe contener errores. Los errores de correccion se
pueden referir a dos aspectos. Defectos de “escritura”, es decir, defectos en el
uso de la notacion de disefio empleada (el disefio contiene detalles prohibidos
por la notacion). Defectos con respecto a los requisitos: el disefio no realiza lo
que el requisito establece. Hablando apropiadamente, los primeros son los
puros defectos de correccion, mientras que los segundos son defectos de
validez.

o Complecion. El disefio debe estar completo. Ya sea que disefia todo el sistema
marcado por los requisitos; ya sea no disefiando ninguna parte no indicada en
los requisitos. De nuevo, nada falta, nada sobra.

o Consistencia. Al igual que en los requisitos, el disefio debe ser consistente
entre todas sus partes. No puede indicarse algo en una parte del disefio, y lo
contrario en otra.

o Factibilidad. El disefio debe ser realizable. Debe poderse implementar.

o Trazabilidad. Se debe poder navegar desde un requisito hasta el fragmento de
disefio donde éste se encuentra representado.

e (Cddigo Fuente:

o Correccion. El codigo no debe contener errores. Los errores de correccion se
pueden referir a dos aspectos. Defectos de “escritura”, es decir, lo que
habitualmente se conoce por “programa que no funciona”. Por ejemplo, bucles
infinitos, variable definida de un tipo pero utilizada de otro, contador que se
sale de las dimensiones de un array, etc. Defectos con respecto al disefio: el
disefio no realiza lo que el diseflo establece.

De nuevo, hablando apropiadamente, los primeros son los puros defectos de correccion,
mientras que los segundos son defectos de validez. Un defecto de correccion es un codigo
que estd mal para cualquier dominio. Un defecto de validez es un codigo que, en este
dominio particular (el marcado por esta necesidad de usuario, estos requisitos, y este
diseno) hace algo inapropiado. Por ejemplo, define una variable de un tipo (y se usa en el
programa con ese tipo, es decir, “a primera vista” no hay nada incorrecto en la definicion
del tipo y su uso) que no es la que corresponde con el problema; o define un array de un
tamafio que no es el que se corresponde con el problema. Notese que para detectar los
errores de validez (en cualquier producto) debe entenderse el problema que se pretende
resolver, mientras que los defectos de correccion son errores siempre, aun sin conocer el
problema que se pretende resolver.

o Complecion. El codigo debe estar completo. Una vez mas, nada falta ni nada
sobra (con respecto, en este caso, al disefio)

o Consistencia. Al igual que en los requisitos y diseflo, el codigo debe ser
consistente entre todas sus partes. No puede hacerse algo en una parte del
co6digo, y lo contrario en otra.

N.Juristo/A. Moreno Pag.17

o Trazabilidad. Se debe poder navegar desde un requisito hasta el fragmento de
codigo donde éste se ejecute, pasando por el fragmento de disefo.

3.3 TECNICAS DE EVALUACION ESTATICA

Las técnicas de Evaluacion estatica de artefactos del desarrollo se las conoce de modo genérico por
Revisiones. Las revisiones pretenden detectar manualmente defectos en cualquier producto del
desarrollo. Por manualmente queremos decir que el producto en cuestion (sea requisito, disefio,
codigo, etc.) esta impreso en papel y los revisores estan analizando ese producto mediante la lectura
del mismo, sin ejecutario.

Existen varios tipos de revisiones, dependiendo de qué se busca y como se analiza ese producto.
Podemos distinguir entre:

e Revisiones informales, también llamadas inadecuadamente s6lo Revisiones (lo cual
genera confusion con el nombre genérico de todas estas técnicas). Las Revisiones
Informales no dejan de ser un intercambio de opiniones entre los participantes.

e Revisiones formales o Inspecciones. En las Revisiones Formales, los participantes son
responsables de la fiabilidad de la evaluacion, y generan un informe que refleja el acto
de la revision. Por tanto, s6lo consideramos aqui como técnica de evaluacion las
revisiones formales, puesto que las informales podemos considerarlas un antepasado
poco evolucionado de esta misma técnica.

o Walkthrough. Es una revision que consiste en simular la ejecucion de casos de prueba
para el programa que se estd evaluando. No existe traduccion exacta en espafiol y a
menudo se usa el término en ingles. Quizas la mejor traduccion porque ilustra muy
bien la idea es Recorrido. De hecho, con los walkthrough se recorre el programa
imitando lo que haria la computadora.

e Auditorias. Las auditorias contrastan los artefactos generados durante el desarrollo con
estandares, generales o de la organizacion. Tipicamente pretenden comprobar formatos
de documentos, inclusion de toda la informacidn necesaria, etc. Es decir, no se tratan
de comprobaciones técnicas, sino de gestion o administracion del proyecto.

3.4 INSPECCIONES

3.4.1 ;QUE SON LAS INSPECCIONES?

Las inspecciones de software son un método de analisis estatico para verificar y validar un producto
software manualmente. Los términos Inspecciones y Revisiones se emplean a menudo como
sinonimos. Sin embargo, como ya se ha visto, este uso intercambiable no es correcto.

Las Inspecciones son un proceso bien definido y disciplinado donde un equipo de personas
cualificadas analiza un producto software usando una técnica de lectura con el propdsito de detectar
defectos. El objetivo principal de una inspeccion es detectar faltas antes de que la fase de prueba
comience. Cualquier desviacion de una propiedad de calidad predefinida es considerada un defecto.

N.Juristo/A. Moreno Pag.18

Para aprender a realizar inspecciones vamos a estudiar primero el proceso que debe seguirse y luego
las técnicas de lectura.

3.4.2 EL PROCESO DE INSPECCION

Las Inspecciones constan de dos partes: Primero, la comprension del artefacto que se inspecciona;
Y en segundo lugar, la bisqueda de faltas en dicho artefacto. Mas concretamente, una inspeccion
tiene cuatro fases principales:

1.

Inicio — El objetivo es preparar la inspeccion y proporcionar la informacion que se
necesita sobre el artefacto para realizar la inspeccion.

2. Deteccion de defectos — Cada miembro del equipo realiza individualmente la lectura

del material, compresion del artefacto a revisar y la deteccion de faltas. Las Técnicas
de Lectura ayudan en esta etapa al inspector tanto a comprender el artefacto como a
detectar faltas. Basandose en las faltas detectadas cada miembro debe realizar una
estimacion subjetiva del nimero de faltas remanentes en el artefacto.

Coleccion de defectos — El registro de las faltas encontrada por cada miembro del
equipo es compilado en un solo documento que servira de basa a la discusion sobre
faltas que se realizard en grupo. Utilizando como base las faltas comunes encontradas
por los distintos inspectores se puede realizar una estimacion objetiva del numero de
faltas remanentes. En la reunion se discutira si las faltas detectadas son falsos positivos
(faltas que algtin inspector cree que son defectos pero que en realidad no lo son) y se
intentara encontrar mas faltas ayudados por la sinergia del grupo.

Correccion y seguimiento — El autor del artefacto inspeccionado debe corregir las
faltas encontradas e informar de las correcciones realizadas a modo de seguimiento.

Estas fases se subdividen ademas en varias subfases:

1.

Inicio

1.1 Planificacion

1.2 Lanzamiento
Deteccion de defectos
Coleccion de defectos

3.1 Compilacion

3.2 Inspeccion en grupo
Correccion y seguimiento
4.1 Correccion

4.2 Seguimiento

Veamos cada una de estas fases;

Durante La Planificacién se deben seleccionar los participantes, asignarles roles, preparar un
calendario para la reunion y distribuir el material a inspeccionar. Tipicamente suele haber una
persona en la organizacion o en el proyecto que es responsable de planificar todas las actividades de

N.Juristo/A. Moreno Pag.19

inspeccion, aunque luego juegue ademas otros papeles. Los papeles que existen en una inspeccion
son:

e Organizador. El organizador planifica las actividades de inspeccion en un proyecto, o
incluso en varios proyectos (o entre proyectos, porque se intercambian participantes:
los desarrollados de uno son inspectores de otro).

e Moderador. El moderador debe garantizar que se sigan los procedimientos de la
inspeccion asi como que los miembros del equipo cumplan sus responsabilidades.
Ademas, modera las reuniones, lo que significa que el éxito de la reunién depende de
esta persona y, por tanto, debe actuar como lider de la inspeccion. Es aconsejable que
la persona que juegue este rol haya seguido cursos de manejo de reuniones y liderazgo

e Inspector. Los inspectores son los responsables de detectar defectos en el producto
software bajo inspeccion. Habitualmente, todos los participantes en una inspeccion
actian también como inspectores, independientemente de que, ademas, jueguen algiin
otro papel.

e Lector/Presentador. Durante la reunion para la inspeccion en grupo, el lector dirigira al
equipo a través del material de modo completo y logico. El material debe ser
parafraseado a una velocidad que permita su examen detallado al resto de los
participantes. Parafrasear el material significa que el lector debe explicar e interpretar
el producto en lugar de leerlo literalmente.

e Autor. El autor es la persona que ha desarrollado el producto que se esta
inspeccionando y es el responsable de la correccion de los defectos durante la fase de
correccion. Durante la reunion, el autor contesta a las preguntas que el lector no es
capaz de responder. El autor no debe actuar al mismo tiempo ni de moderador, ni de
lector, ni de escriba.

e FEscriba. El secretario o escriba es responsable de incorporar todos los defectos en una
lista de defectos durante la reunion.

e Recolector. El recolector recoge los defectos encontrados por los inspectores en caso
de no haber una reunién de inspeccion.

Es necesario hacer ciertas consideraciones sobre el numero de participantes. Un equipo de
inspeccion nunca deberia contar con mas de cinco miembros. Por otro lado, el nimero minimo de
participantes son dos: el autor (que actia también de inspector) y un inspector. Lo recomendable es
comenzar con un equipo de tres o cuatro personas: el autor, uno o dos inspectores y el moderador
(que actua también como lector y escriba). Tras unas cuantas inspecciones la organizacion puede
experimentar incorporando un inspector mas al grupo y evaluar si resulta rentable en términos de
defectos encontrados.

Sobre el tema de como seleccionar las personas adecuadas para una inspeccion, los candidatos
principales para actuar como inspectores es el personal involucrado en el desarrollo del producto.
Se pueden incorporar inspectores externos si poseen algin tipo de experiencia especifica que
enriquezca la inspeccion. Los inspectores deben tener un alto grado de experiencia y conocimiento.

La fase de Lanzamiento consiste en una primera reuniéon donde el autor explica el producto a
inspeccionar a los otros participantes. El objetivo principal de esta reunion de lanzamiento, es
facilitar la comprension e inspeccion a los participantes. No obstante, este meeting no es

N.Juristo/A. Moreno Pag.20

completamente necesario, pues en ocasiones puede consumir mas tiempo y recursos de los
beneficios que reporte. Sin embargo, existen un par de condiciones bajo las cuales es recomendable
realizar esta reunion. En primer lugar, cuando el artefacto a inspeccionar es complejo y dificil de
comprender. En este caso una explicacion por parte del autor sobre el producto a inspeccionar
facilita la comprension al resto de participantes. En segundo lugar, cuando el artefacto a
inspeccionar pertenece a un sistema software de gran tamafio. En este caso, se hace necesario que el
autor explique las relaciones entre el artefacto inspeccionado y el sistema software en su globalidad.

La fase de Deteccion de Defectos es ¢l corazon de la inspeccion. El objetivo de esta fase es
escudrifiar un artefacto software pare obtener defectos. Localizar defectos es una actividad en parte
individual y en parte de grupo. Si se olvida la parte individual de la inspeccion, se corre el riesgo de
que los participantes sean mas pasivos durante la reunion y se escuden en el grupo para evitar hacer
su contribucion. Asi pues, es deseable que exista una fase de deteccion individual de defectos con el
objetivo explicito de que cada participante examine y entienda en solitario el producto y busque
defectos. Este esfuerzo individual garantiza que los participantes iran bien preparados a la puesta en
comun.

Los defectos detectados por cada participante en la inspeccion deben ser reunidos y documentado.
Es mas, debe decidirse si un defecto es realmente un defecto. Esta recoleccion de defectos y la
discusion sobre falsos positivos se realizan, respectivamente, en la fase de Compilacion y Reunion.
La recoleccion de defectos debe ayudar a tomar la decision sobre si es necesaria una reinspeccion
del artefacto o no. Esta decision dependera de la cantidad de defectos encontrados y sobre todo de
la coincidencia de los defectos encontrados por distintos participantes. Una coincidencia alta de los
defectos encontrados por unos y por otros (y un numero bajo de defectos encontrados) hace pensar
que la cantidad de defectos que permanecen ocultos sea baja. Una coincidencia pobre (y un numero
relativamente alto de defectos encontrados) hace pensar que aun quedan muchos defectos por
detectar y que, por tanto, es necesaria una reinspeccion (una vez acabada ésta y corregidas las faltas
encontradas).

Dado que una reunion consume bastantes recursos (y mas cuantos mas participantes involucre) se
ha pensado en una alternativa para hacer las reuniones mas ligeras. Las llamadas reuniones de
deposicion, donde solo asisten tres participantes: moderador, autor, y un representante de los
inspectores. Este representante suele ser el inspector de mas experiencia, el cual recibe los defectos
detectados por los otros inspectores y decide él, unilateralmente, sobre los falsos positivos. Algunos
autores incluso han dudado del efecto sinergia de las reuniones y han aconsejado su no realizacion.
Parece que lo mas recomendable es que las organizaciones comiencen con un proceso de inspeccion
tradicional, donde la reunion sirve para compilar defectos y discutir falsos positivos, y con el
tiempo y la experiencia prueben a variar el proceso eliminando la reuniéon y estudiando si se
obtienen beneficios equivalentes en términos de defectos encontrados.

Es importante resaltar, que la reunién de una inspeccién no es una sesion para resolver los defectos
u otros problemas. No se deben discutir en estas reuniones ni soluciones digamos radicales (otras
alternativas de disefio o implementacion, que el autor no ha utilizado pero podria haberlo hecho), ni
como resolver los defectos detectados, y, mucho menos, discutir sobre conflictos personales o
departamentales.

Finalmente, el autor corrige su artefacto para resolver los defectos encontrados o bien proporciona
una explicacion razonada sobre porqué cierto defecto detectado en realidad no lo es. Para esto, el
autor repasa la lista de defectos recopilada y discute o corrige cada defecto. El autor debera enviar
al moderador un informe sobre los defectos corregidos o, en caso de no haber corregido alguno,
porqué no debe corregirse. Este informe sirve de seguimiento y cierre de la inspeccion, o, en caso

N.Juristo/A. Moreno Pag.21

de haberse decidido en la fase de recopilacion que el artefacto necesitaba reinspeccion, se iniciara
de nuevo el proceso.

3.4.3 ESTIMACION DE LOS DEFECTOS REMANENTES

A pesar de que el proposito principal de las Inspecciones es detectar y reducir el nimero de
defectos, un efecto colateral pero importante es que permiten realizar desde momentos muy
iniciales del desarrollo predicciones de la calidad del producto. Concretamente, las estimaciones de
las faltas remanentes tras una inspeccion deben utilizarse como control de la calidad del proceso de
desarrollo.

Hay varios momentos de estimacion de faltas remanentes en una inspeccion. Al realizar la busqueda
individual de faltas, el inspector puede tener una idea de las faltas remanentes en base a las
siguientes dos heuristicas:

e Encontrar muchas faltas es sospechoso. Muchas faltas detectadas hacen pensar que
debe haber muchas mas, puesto que la creencia de que queden pocas faltas sélo se
puede apoyar en la confianza en el proceso de inspeccion y no en la calidad del
artefacto (que parece bastante baja puesto que hemos encontrado muchas faltas)

e Encontrar muy pocas faltas también resulta sospechoso, especialmente si es la primera
vez que se inspecciona este artefacto. Pocas faltas hacen pensar que deben quedar
muchas mas, puesto que esta situacion hace dudar sobre la calidad del proceso de
inspeccion: No puede saberse si se han encontrado pocas debido a la alta calidad del
artefacto o a la baja calidad de la inspeccion.

La estimacion mas fiable sobre el numero de faltas remanentes que se puede obtener en una
Inspeccion es la coincidencia de faltas entre los distintos inspectores. Los métodos que explotan
coincidencias para estimar se llaman Estimaciones Captura-Recaptura y no son originarias de la
Ingenieria del Software. En concreto lo uso por primera vez Laplace para estimar la poblacion de
Francia en 1786, y se utilizan a menudo en Biologia para estimar el tamafio de poblaciones de
animales. En el caso de las Inspecciones, el nivel de coincidencia de las faltas detectadas por los
distintos revisores es usado como estimador'”.

La idea sobre la que se basa el uso de las coincidencias es la siguiente: Pocas coincidencias entre los
revisores, significa un numero alto de faltas remanentes; Muchas coincidencias, significara pocas
faltas remanentes. Los casos extremos son los siguientes. Supongamos que todos los revisores han
encontrado exactamente el mismo conjunto de faltas. Esto debe significar que deben quedar muy
pocas faltas, puesto que el proceso de inspeccion parece haber sido bueno (los inspectores han
encontrado las mismas faltas) parece poco probable que queden mas faltas por ahi que ningin
revisor ha encontrado. Supongamos ahora que ninglin revisor ha encontrado las mismas faltas que
otro revisor. Esto debe querer decir que quedan muchas mas por encontrar, puesto que el proceso de
revision parece haber sido pobre (a cada revisor se le han quedado ocultas n faltas —todas las
encontradas por los otros revisores-) vaya usted a saber cuantas faltas mas han quedado ocultas a
todos los revisores. Esta situacion deberia implicar una nueva inspeccion del artefacto (tanto para
mejorar la calidad del mismo, como para hacer un intento de mejorar la propia inspeccion).

15 Un estimador en una formula usada para predecir el nimero de faltas que quedan. Un modelo de estimacion
es el paraguas para denominar a un conjunto de estimadores basados en los mismos prerrequisitos.

N.Juristo/A. Moreno Pag.22

3.4.4 TECNICAS DE LECTURA

Las técnicas de lectura son guias que ayudan a detectar defectos en los productos software.
Tipicamente, una técnica de lectura consiste en una serie de pasos o procedimientos cuyo proposito
es que el inspector adquiere un conocimiento profundo del producto software que inspecciona. La
comprension de un producto software bajo inspeccion es un prerrequisito para detectar defectos
sutiles y, o, complejos. En cierto sentido, una técnica de lectura puede verse como un mecanismo
para que los inspectores detecten defectos en el producto inspeccionado.

Las técnicas de lectura mas populares son la lectura Ad-hoc y la lectura basada en listas de
comprobacion. Ambas técnicas pueden aplicarse sobre cualquier artefacto software, no solo sobre
codigo. Ademas de estas dos técnicas existen otras que, aunque menos utilizadas en la industria,
intentan abordar los problemas de la lectura con listas y la lectura ad-hoc: Lectura por Abstraccion,
Revision Activa de Disefio y Lectura Basada en Escenarios. Esta tltima se trata de una familia de
técnicas a la que pertenecen: Lectura Basada en Defectos y Lectura Basada en Perspectivas.
Veamos en qué consisten cada una.

3.44.1 LECTURA SIN CHECKLISTS Y CON CHECKLISTS

En la técnica de lectura Ad-hoc, el producto software se entrega a los inspectores sin ninguna
indicacién o guia sobre como proceder con el producto ni qué buscar. Por eso la denominamos
también como Lectura sin Checklists.

Sin embargo, que los participantes no cuenten con guias de qué buscar no significa que no
escudrifien sistematicamente el producto inspeccionado, ni tampoco que no tengan en mente el tipo
de defecto que estan buscando. Como ya hemos dicho antes, si no se sabe lo que se busca, es
imposible encontrarlo. El término "ad-hoc" sélo se refiere al hecho de no proporcionar apoyo a los
inspectores. En este caso la deteccion de los defectos depende completamente de las habilidades,
conocimientos y experiencia del inspector.

Tipicamente, el inspector debera buscar secuencialmente los defectos tipicos del producto que esté
leyendo (y que hemos indicado mas arriba). Por ejemplo, si se estd inspeccionando unos requisitos,
el inspector, buscard sistematica y secuencialmente defectos de correccion, de completud, de
ambigiiedad, etc.

Para practicar esta técnica, en el Anexo A aparece unos requisitos con defectos. Intenta buscarlos de
acuerdo a lo indicado en el parrafo anterior. Sin guia alguna, simplemente utilizando la lista de
criterios de calidad que debe cumplir unos requisitos que hemos indicado anteriormente.

La lectura basada en Listas de Comprobacion (checklists, en inglés) proporciona un apoyo
mayor mediante preguntas que los inspectores deben de responder mientras leen el artefacto. Es
decir, esta técnica proporciona listas que ayudan al inspector a saber qué tipo de faltas buscar.
Aunque una lista supone mas ayuda que nada, esta técnica presenta la debilidad de que las
preguntas proporcionan poco apoyo para ayudar a un inspector a entender el artefacto
inspeccionado. Ademas, las preguntas son a menudo generales y no suficientemente adaptadas a un
entorno de desarrollo particular. Finalmente, las preguntas en una lista de comprobacion estan
limitadas a la deteccion de defectos de un tipo determinado, tipicamente de correccion, puesto que
las listas establecen errores universales (independientes del contexto y el problema).

N.Juristo/A. Moreno Pag.23

3.4.4.1.1 Checklists para Requisitos y Disefio

Las listas de comprobacion para requisitos contienen preguntas sobre los defectos tipicos que suelen
aparecer en los requisitos. Preguntas tipicas que aparecen en las checklists de requisitos son:

(Existen contradicciones en la especificacion de los requisitos?

(Resulta comprensible la especificacion?

(Esta especificado el rendimiento?

(Puede ser eliminado algun requisito? ;Pueden juntarse dos requisitos?

(Son redundantes o contradictorios?

(,Se han especificado todos los recursos hardware necesarios?

(Se han especificado las interfaces externas necesarias?

(Se han definido los criterios de aceptacion para cada una de las funciones
especificadas?

ASRNE N N N N NN

Notese que las cinco primeras preguntas, corresponden simplemente a los criterios de calidad de los
requisitos. Mientras que las tres ultimas tratan olvidos tipicos al especificar requisitos. Las dos que
aparecen en primer lugar son comprobaciones sobre la especificacion del hardware sobre el que
correra el futuro sistema y sobre como debera interactuar con otros sistemas. La Gltima comprueba
que los requisitos contienen criterios de aceptacion para cuando se realicen las pruebas de
aceptacion.

Los requisitos necesitan ser evaluados de forma critica para prevenir errores. En esta fase radica la
calidad del producto software desde la perspectiva del usuario. Si la evaluacion en general es dificil,
la de los requisitos en particular lo es mas, debido a que lo que se evalua es la definicion del
problema.

Con respecto al disefio, los objetivos principales de su evaluacion estatica son:

e Determinar si la solucion elegida es la mejor de todas las opciones; es decir, si la opcion es
la mas simple y la forma mas facil de realizar el trabajo.

e Determinar si la solucion abarca todos los requisitos descritos en la especificacion; es decir,
si la solucion elegida realizara la funcion encomendada al software.

Al igual que la evaluacion de requisitos, la evaluacion de disefio es crucial, ya que los defectos de
disefio que queden y sean transmitidos al codigo, cuando sean detectados en fases mas avanzadas
del desarrollo, o incluso durante el uso, implicara un redisefio del sistema, con la subsiguiente re-
codificacion. Es decir, existira una pérdida real de trabajo.

Veamos un ejemplo de preguntas para el disefio:

(Cubre el disefio todos los requisitos funcionales?

(Resulta ambigua la documentacion del disefio?

(Se ha aplicado la notacion de disefio correctamente?

(,Se han definido correctamente las interfaces entre elementos del disefio?

(Es el disefio suficientemente detallado como para que sea posible
implementarlo en el lenguaje de programacion elegido?

En el Anexo B aparecen listas de comprobacion para diferentes productos del desarrollo
proporcionadas por la empresa Construx. Intenta revisar ahora de nuevo los requisitos del Anexo A,
esta vez usando las listas de comprobacion del Anexo B. Esta misma especificacion de requisitos se

NANENENRN

N.Juristo/A. Moreno Pag.24

usa mas tarde con otra técnica de lectura. Serd entonces cuando aportemos la solucion sobre qué
defectos contienen estos requisitos.

3.4.4.1.2 Checklists para Codigo

Las listas para codigo han sido mucho mas estudiadas que para otros artefactos. Asi hay listas para
distintos lenguajes de programacion, para distintas partes de codigo, etc.

Una tipica lista de comprobacion para codigo contendra varias partes (una por los distintos tipos
de defecto que se buscan) cada una con preguntas sobre defectos universales y tipicos. Por ejemplo:

e [Logica del programa:

v (Es correcta la 16gica del programa?
v' (Esta completa la logica del programa?, es decir, jesta todo correctamente
especificado sin faltar ninguna funcion?

e Interfaces Internas:

v (Es igual el nimero de parametros recibidos por el mddulo a probar al nimero
de argumentos enviados?, ademas, (el orden es correcto?

v (Los atributos (por ejemplo, tipo y tamafio) de cada pardmetro recibido por el
modulo a probar coinciden con los atributos del argumento correspondiente?

v ;Coinciden las unidades en las que se expresan parametros y argumentos? Por
ejemplo, argumentos en grados y parametros en radianes.;Altera el modulo un
parametro de solo lectura?;Son consistentes las definiciones de variables
globales entre los modulos?

e Interfaces Externas:

e Datos:

v ;Se declaran los ficheros con todos sus atributos de forma correcta?

v ;Se abren todos los ficheros antes de usarlos?

v (Coincide el formato del fichero con el formato especificado en la lectura?;Se
manejan correctamente las condiciones de fin de fichero? ;Se los libera de
memoria?

v ;Se manejan correctamente los errores de entrada/salida?

Referencias de datos. Se refieren a los accesos que se realizan a los mismos.
Ejemplos tipicos son:
v' Utilizar variables no inicializadas
v’ Salirse del limite de las matrices y vectores
v’ Superar el limite de tamafio de una cadena
Declaracion de datos. El proposito es comprobar que todas las definiciones de los
datos locales son correctas. Por ejemplo:
v" Comprobar que no hay dos variables con el mismo nombre
v" Comprobar que todas las variables estén declaradas
v Comprobar que las longitudes y tipos de las variables sean correctos.
Calculo. Intenta localizar errores derivados del uso de las variables. Por ejemplo:
v" Comprobar que no se producen overflow o underflow (valores fuera de
rango, por encima o por debajo) en los célculos o divisiones por cero.
Comparacion. Intenta localizar errores en las comparaciones realizadas en
instrucciones tipo If-Then-Else, While, etc. Por ejemplo:
v" Comprobar que no existen comparaciones entre variables con diferentes
tipos de datos o si las variables tienen diferente longitud.

N.Juristo/A. Moreno

Pag25

v" Comprobar si los operadores utilizados en la comparacion son correctos, si
utilizan operadores booleanos comprobar si los operandos usados son
booleanos, etc.

En el Anexo C se proporcionan distintas listas de comprobacion para diversas partes y
caracteristicas del codigo. En el Anexo D tienes un programa y una pequeiia lista de comprobacion
de codigo para que te ejercites buscando defectos. Deberias detectar al menos un par de defectos, al
menos. Mas adelante usaremos este mismo programa para practicar con otra técnica y sera entonces
cuando proporcionaremos la lista de defectos de este programa.

3.4.4.2 LECTURA POR ABSTRACCION SUCESIVA

La Lectura por Abstraccién Sucesiva sirve para inspeccionar co6digo, y no otro tipo de artefacto
como requisitos o disefio. La idea sobre la que se basa esta técnica de lectura para detectar defectos
es en la comparacion entre la especificacion del programa (es decir, el texto que describe lo que el
programa deberia hacer) y lo que el programa hacer realmente. Naturalmente, todos aquellos puntos
donde no coincida lo que el programa deberia hacer con lo que el programa hace es un defecto.

Dado que comparar codigo con texto (la especificacion) es inapropiado pues se estarian
comparando unidades distintas (peras con manzanas), se¢ hace necesario convertir ambos artefactos
a las mismas “unidades”. Lo que se hace, entonces, es convertir el programa en una especificacion
en forma de texto. De modo que podamos comparar especificacion (texto) con especificacion
(texto).

Obtener una especificacion a partir de un codigo significa recorrer el camino de la programacion en
sentido inverso. El sentido directo es obtener un codigo a partir de una especificacion. Este camino
se recorre en una seria de pasos (que a menudo quedan ocultos en la mente del programador y no se
hacen explicitos, pero que no por eso dejan de existir). El recorrido directo del camino de la
especificacion al codigo consta de los siguientes pasos:

1. Leer la especificacion varias veces hasta que el programador ha entendido lo que el codigo
debe hacer.

2. Descomponer la tarea que el programa debe hacer en subtareas, que tipicamente se
corresponderan con las funciones o modulos que compondran el programa. Esta
descomposicion muestra la relacion entre funciones, que no siempre es secuencial, sino
tipicamente en forma de arbol: Funciones alternativas que se ejecutaran dependiendo de
alguna condicion; Funciones suplementarias que se ejecutaran siempre una si se ejecuta la
otra; etc.

3. Para cada uno de estas subtareas (funciones):

3.1. Hacer una descripcion sistematica (tipicamente en pseudocodigo) de como realizar la
tarea. En esta descripcion se pueden ya apreciar las principales estructuras de las que
constara la funcion (bucles, condicionales, etc.)

3.2. Programar cada linea de codigo que compone la funcion

Como puede observarse en este proceso, el programador trabaja desde la especificacion por
descomposiciones sucesivas. Es decir, dividiendo una cosa compleja (la especificacion) en cosas
cada vez mas sencillas (primero las funciones, luego las estructuras elementales de los programas,

N.Juristo/A. Moreno Pag.26

finalmente las lineas de codigo). Este tipo de tarea se realiza de arriba hacia abajo, partiendo de la
especificacion (arriba o nodo raiz) y llegando a n lineas de codigo (abajo o nodos hojas).

Pues bien, si queremos obtener una especificacion a partir de un codigo deberemos hacer este
mismo recorrido pero en sentido contrario: de abajo hacia arriba. Por tanto, deberemos comenzar
con las lineas de codigo, agruparlas en estructuras elementales, y éstas en funciones y éstas en un
todo que sera la descripcion del comportamiento del programa. En este caso no estamos trabajando
descomponiendo, sino componiendo. La tarea que se realiza es de abstraccion. De ahi el nombre de
la técnica: abstraccion sucesiva (ir sucesivamente —ascendiendo en niveles cada vez superiores-
abstrayendo qué hace cada elemento —primero las lineas, luego las estructuras, finalmente las
funciones).

Esta técnica requiere que el inspector lea una serie de lineas de codigo y que abstraiga la funcion
que estas lineas computan. El inspector debe repetir este procedimiento hasta que la funcion final
del codigo que se esta inspeccionando se haya abstraido y pueda compararse con la especificacion
original del programa.

Mas concretamente, el proceso que se debe seguir para realizar la abstraccion sucesiva es el
siguiente:

1. Leer por encima el codigo para tener una idea general del programa.

2. Determinar las dependencias entre las funciones individuales del codigo fuente (quién
llama a quién). Para esto puede usarse un arbol de llamadas para representar tales
dependencias comenzando por las hojas (funciones que no llaman a nadie) y acabando
por la raiz (funcion principal).

3. Comprender qué hace cada funcion. Para ello se debera: Entender la estructura de cada
funcion individual identificando las estructuras elementales (secuencias, condicionales,
bucles, etc.) y marcandolas; Combinar las estructuras elementales para formar
estructuras mas grandes hasta que se haya entendido la funcion entera. Es decir, para
cada funcién y comenzando desde las funciones hoja y acabando por la raiz:

3.1. Identificar las estructuras elementales de cada funcion y marcarlas de la
mas interna a la mas externa.

3.2. Determinar el significado de cada estructura comenzando con la mas
interna. Para ello pueden seguirse las siguientes recomendaciones:

e Usar los numeros de linea (lineas x-y) para identificar las lineas que
abarca una estructura ¢ indicar a su lado qué hace.

e Evitar utilizar conocimiento implicito que no resida en la estructura
(valores iniciales, entradas o valores de parametros).

e Usar principios generalmente aceptados del dominio de aplicacion para
mantener la descripcion breve y entendible (“busqueda en profundidad”
en lugar de describir lo que hace la biisqueda en profundidad).

3.3. Especificar el comportamiento de la funcion entera. Es decir, utilizar la
informacion de los pasos 3.1 y 3.2 para entender qué hace la funcion y
describirlo en texto.

N.Juristo/A. Moreno Pag.27

4. Combinar el comportamiento de cada funcion y las relaciones entre ellas para entender
el comportamiento del programa entero. El comportamiento debera describirse en texto.
Esta descripcion es la especificacion del programa obtenida a partir del codigo.

5. Comparar la especificacion obtenida con la especificacion original del programa. Cada
punto donde especificacion original y especificacion generada a partir del codigo no
coincidan es un defecto. Anotar los defectos en una lista.

Veamos un breve ejemplo para entender mejor la técnica. El programa “count” ya lo conoces pues
lo has usado para practicar con la técnica de lectura con listas de comprobacion. Centrémonos en el
siguiente trozo de especificacion original:

Si alguno de los ficheros que se le pasa como argumento no existe, aparece por la salida de
error el mensaje de error correspondiente y se continiia procesando el resto de los ficheros.

Que se implementa mediante las siguientes lineas de codigo entresacadas del programa “count”.

if (arge > 1 && (fp=fopen(argv(i], "r'"')) == NULL) {
fprintf (stdout, "can't open %s\n", argv[i]);
exit(1)

H

La abstraccion de estas lineas seria:

Linea 1Si no hay ficheros que coincidan con el argumento (fp=fopen(argv[i], "r")) ==
NULL)

Linea 2Se imprime por la salida estandar (stdout)el mensaje de que no se puede abrir el
fichero (indicando el nombre del fichero)

Linea 3Se sale del programa

Que se corresponde con la siguiente descripcion:

Se proporcionan argumentos, pero no hay ficheros con nombres correspondientes a los
argumentos. En este caso, el programa se para con un mensaje de error que sale por la
salida estandar.

Notese que las especificaciones no coinciden en algunos puntos. En la Tabla 2 se ve la comparacion
y aparecen en negrita sefialadas las diferencias.

N.Juristo/A. Moreno Pag.28

ESPECIFICACION ORIGINAL

ESPECIFICACION OBTENIDA POR
ABSTRACCION

Si alguno de los ficheros que se le pasa como
argumento no existe, aparece por la salida de
error el mensaje de error correspondiente y se

Se proporcionan argumentos, pero no hay
ficheros con nombres correspondientes a los
argumentos. En este caso, el programa se

para con un mensaje de error que sale por la
salida estindar.

continia procesando el resto de los ficheros.

Tabla 2. Diferencias entre especificacion original y especificacién abstraida

Por tanto, se detecta la siguiente falta en el codigo:

Falta en linea 2: La llamada a “fprintf” usa “stdout” en lugar de “stderr”.

Causa fallo: Los mensajes de error aparecen en la salida estandar (stdout) en lugar de la
salida estandar de errores (stderr).

En el Anexo E se muestra la aplicacion de esta técnica al programa completo “count”. Intenta
practicar con este ejercicio realizando ti mismo la abstraccion y deteccion de faltas antes de mirar
la solucién proporcionada. Ademas, el Anexo F y el Anexo G contienen dos programas mas y su
lista de defectos para que el lector se ejercite hasta dominar esta técnica de lectura.

3.4.4.3 LECTURA ACTIVA DE DISENO

La Revision Activa de Diseiio s6lo es aplicable sobre el disefio, y no sobre codigo o requisitos.
Esta técnica propone una cierta variacion metodologica al proceso basico de inspeccion. En
concreto requiere que los inspectores tomen un papel mas activo del habitual, solicitando que hagan
aseveraciones sobre determinadas partes del disefio, en lugar de simplemente sefialar defectos. La
Revision Activa de Diseflo considera que la inspeccion debe explotar mas la interaccion entre autor
e inspector, y que la inspeccion tradicional limita demasiado esta interaccion. En esta técnica solo
se definen dos roles: un inspector que tiene la responsabilidad de encontrar defectos, y un disefiador
que es el autor del disefio que se esta examinando.

El proceso de la Inspeccion Activa de Disefio consta de tres pasos. Comienza con una fase de inicio
donde el disefiador presenta una vision general del disefio que se pretende inspeccionar y también se
establece el calendario. La segunda fase es la de deteccion, para la cual el autor proporciona un
cuestionario para guiar a los inspectores. Las preguntas solo deben poderse responder tras un
estudio detallado y cuidadoso del documento de disefio. Esto es, los inspectores deben elaborar una
respuesta, en lugar de simplemente responder si o no. Las preguntas refuerzan un papel activo de
inspeccion puesto que deben realizar afirmaciones sobre decisiones de disefio. Por ejemplo, se le
puede pedir al inspector que escriba un segmento de programa que implemente un disefio particular
al inspeccionar un disefio de bajo nivel. El ultimo paso es la recoleccion de defectos que se realiza
en una reunion de inspeccion. Sin embargo, el meeting se subdivide en pequefias reuniones
especializadas, cada una se concentra en una propiedad de calidad del artefacto. Por ejemplo,
comprobar la consistencia entre las asunciones y las funciones, es decir, determinar si las

N.Juristo/A. Moreno Pag.29

asunciones son consistentes y detalladas lo suficiente para asegurar que las funciones puedan ser
correctamente implementadas y usadas.

3.44.4 LECTURA BASADA EN ESCENARIOS

La Lectura Basada en Escenarios proporciona guias al inspector (escenarios que pueden ser
preguntas pero también alguna descripcion mas detallada) sobre como realizar el examen del
artefacto. Principalmente, un escenario limita la atencion de un inspector en la deteccion de defectos
particulares definidos por la guia. Dado que inspectores diferentes pueden usar escenarios distintos,
y como cada escenario se centra en diferentes tipos de defectos, se espera que el equipo de
inspeccion resulte mas efectivo en su globalidad .Existen dos técnicas de lectura basada en
escenarios: Lectura Basada en Defectos y Lectura Basada en Perspectivas. Ambas técnicas
examinan documentos de requisitos.

La Lectura Basada en Defectos focaliza cada inspector en una clase distinta de defecto mientras
inspecciona un documento de requisitos. Contestar a las preguntas planteadas en el escenario ayuda
al inspector a encontrar defectos de determinado tipo.

La Lectura Basada en Perspectiva establece que un producto software deberia inspeccionarse bajo
las perspectivas de los distintos participantes en un proyecto de desarrollo. Las perspectivas
dependen del papel que los distintos participantes tienen en el proyecto. Para cada perspectiva se
definen uno o varios escenarios consistentes en actividades repetibles que un inspector debe realizar
y preguntas que el inspector debe responder.

Por ejemplo, disefar los casos de prueba es una actividad tipicamente realizada por el validador.
Asi pues, un inspector leyendo desde la perspectiva de un validador debe pensar en la obtencion de
los casos de prueba. Mientras que un inspector ejerciendo la perspectiva del disefiador, debera leer
ese mismo artefacto pensando en que va atener que realizar el disefio.

En el Anexo H, Anexo I y Anexo J se muestran respectivamente las perspectivas del disefiador,
validador y usuario respectivamente para que las uses con los requisitos del Anexo A. Cada
perspectiva descubre defectos distintos. En dichos anexos te proporcionamos también la solucion de
qué defectos son encontrados desde cada perspectiva. Finalmente, y a modo de resumen el Anexo K
puedes encontrar una tabla con todos los defectos de los requisitos del Anexo A.

N.Juristo/A. Moreno Pag.30

4. TECNICAS DE EVALUACION DINAMICA

4.1 CARACTERISTICAS Y FASES DE LA PRUEBA

Como se ha indicado anteriormente, a la aplicacion de técnicas de evaluacion dinamicas se le
denomina también prueba del software.

La Figura 2 muestra el contexto en el que se realiza la prueba de software. Concretamente la Prueba
de software se puede definir como una actividad en la cual un sistema o uno de sus componentes se
ejecuta en circunstancias previamente especificadas (configuracion de la prueba), registrandose los
resultados obtenidos. Seguidamente se realiza un proceso de Evaluacion en el que los resultados
obtenidos se comparan con los resultados esperados para localizar fallos en el software. Estos fallos
conducen a un proceso de Depuracion en el que es necesario identificar la falta asociada con cada
fallo y corregirla, pudiendo dar lugar a una nueva prueba. Como resultado final se puede obtener
una determinada Prediccion de Fiabilidad, tal como se indicoé anteriormente, o un cierto nivel de
confianza en el software probado.

Configuracion
del Software

Resultados de

. la prueba Evaluacion
P Fallos
< Prueba
’ Datos de tasa
de error Depuracién
Configuracion puraci
de la Correciones
Prueba Resultados
esperados
Modelo de
Fiabilidad
Prediccion
Fiabilidad

Figura 2. Contexto de la Prueba de Software

El objetivo de las pruebas no es asegurar la ausencia de defectos en un software, unicamente puede
demostrar que existen defectos en el software. Nuestro objetivo es pues, disefiar pruebas que
sistematicamente saquen a la luz diferentes clases de errores, haciéndolo con la menor cantidad de
tiempo y esfuerzo.

Para ser mas eficaces (es decir, con mas alta probabilidad de encontrar errores), las pruebas
deberian ser realizadas por un equipo independiente al que realizo el software. El ingeniero de
software que cred el sistema no es el mas adecuado para llevar a cabo las pruebas de dicho
software, ya que inconscientemente tratara de demostrar que el software funciona, y no que no lo
hace, por lo que la prueba puede tener menos éxito.

Una prueba de software, comparando los resultados obtenidos con los esperados. A continuacion se
presentan algunas caracteristicas de una buena prueba:

— Una buena prueba ha de tener una alta probabilidad de encontrar un fallo. Para alcanzar este
objetivo el responsable de la prueba debe entender el software e intentar desarrollar una
imagen mental de como podria fallar.

N.Juristo/A. Moreno Pag.31

Una buena prueba debe centrarse en dos objetivos: 1) probar si el software no hace lo que
debe hacer,y 2) probar si el software hace lo que no debe hacer.

Una buena prueba no debe ser redundante. El tiempo y los recursos son limitados, asi que
todas las pruebas deberian tener un proposito diferente.

Una buena prueba deberia ser la “mejor de la cosecha”. Esto es, se deberia emplear la
prueba que tenga la mds alta probabilidad de descubrir una clase entera de errores.

Una buena prueba no deberia ser ni demasiado sencilla ni demasiado compleja, pero si se
quieren combinar varias pruebas a la vez se pueden enmascarar errores, por lo que en
general, cada prueba deberia realizarse separadamente.

Veamos ahora cuales son las tareas a realizar para probar un software:

1.

Diserio de las pruebas. Esto es, identificacion de la técnica o técnicas de pruebas que se
utilizaran para probar el software. Distintas técnicas de prueba ejercitan diferentes criterios
como guia para realizar las pruebas. Seguidamente veremos algunas de estas técnicas.

Generacion de los casos de prueba. Los casos de prueba representan los datos que se
utilizardan como entrada para ejecutar el software a probar. Mas concretamente los casos de
prueba determinan un conjunto de entradas, condiciones de ejecucion y resultados
esperados para un objetivo particular. Como veremos posteriormente, cada técnica de
pruebas proporciona unos criterios distintos para generar estos casos o datos de prueba. Por
lo tanto, durante la tarea de generacion de casos de prueba, se han de confeccionar los
distintos casos de prueba segun la técnica o técnicas identificadas previamente. La
generacion de cada caso de prueba debe ir acompafiada del resultado que ha de producir el
software al ejecutar dicho caso (como se vera mas adelante, esto es necesario para detectar
un posible fallo en el programa).

. Definicion de los procedimientos de la prueba. Esto es, especificacion de como se va a

llevar a cabo el proceso, quién lo va a realizar, cuando, ...

. Ejecucion de la prueba, aplicando los casos de prueba generados previamente e

identificando los posibles fallos producidos al comparar los resultados esperados con los
resultados obtenidos.

. Realizacion de un informe de la prueba, con el resultado de la ejecucion de las pruebas, qué

casos de prueba pasaron satisfactoriamente, cuales no, y qué fallos se detectaron.

Tras estas tareas es necesario realizar un proceso de depuracion de las faltas asociadas a los fallos
identificados. Nosotros nos centraremos en el segundo paso, explicando como distintas técnicas de
pruebas pueden proporcionar criterios para generar distintos datos de prueba.

4.2 TECNICAS DE PRUEBA

Como se ha indicado anteriormente, las técnicas de evaluacion dinamica o prueba proporcionan
distintos criterios para generar casos de prueba que provoquen fallos en los programas. Estas
técnicas se agrupan en:

Técnicas de caja blanca o estructurales, que se basan en un minucioso examen de los
detalles procedimentales del codigo a evaluar, por lo que es necesario conocer la logica del
programa.

N.Juristo/A. Moreno Pag.32

— Técnicas de caja negra o funcionales, que realizan pruebas sobre la interfaz del programa a
probar, entendiendo por interfaz las entradas y salidas de dicho programa. No es necesario
conocer la logica del programa, tinicamente la funcionalidad que debe realizar.

La Figura 3 representa graficamente la filosofia de las pruebas de caja blanca y caja negra. Como se
puede observar las pruebas de caja blanca necesitan conocer los detalles procedimentales del
codigo, mientras que las de caja negra unicamente necesitan saber el objetivo o funcionalidad que el
codigo ha de proporcionar.

! Caja blanca

Entrada Salida

Entrada

Figura 3. Representacion de pruebas de Caja Blanca y Caja Negra

A primera vista pareceria que una prueba de caja blanca completa nos llevaria a disponer de un
codigo perfectamente correcto. De hecho esto ocurriria si se han probado todos los posibles
caminos por los que puede pasar el flujo de control de un programa. Sin embargo, para programas
de cierta envergadura, el nimero de casos de prueba que habria que generar seria excesivo, notese
que el nimero de caminos incrementa exponencialmente a medida que el niimero de sentencias
condicionales y bucles aumenta. Sin embargo, este tipo de prueba no se desecha como
impracticable. Se pueden elegir y ejercitar ciertos caminos representativos de un programa.

Por su parte, tampoco seria factible en una prueba de caja negra probar todas y cada una de las
posibles entradas a un programa, por lo que andlogamente a como ocurria con las técnicas de caja
blanca, se seleccionan un conjunto representativo de entradas y se generan los correspondientes
casos de prueba, con el fin de provocar fallos en los programas.

En realidad estos dos tipos de técnicas son técnicas complementarias que han de aplicarse al realizar
una prueba dinamica, ya que pueden ayudar a identificar distintos tipos de faltas en un programa.

A continuacion, se describen en detalle los procedimientos propuestos por ambos tipos de técnicas
para generar casos de prueba.

4.2.1 PRUEBAS DE CAJA BLANCA O ESTRUCTURALES

A este tipo de técnicas se le conoce también como Técnicas de Caja Transparente o de Cristal. Este
método se centra en como disefiar los casos de prueba atendiendo al comportamiento interno y la

N.Juristo/A. Moreno Pag.33

estructura del programa. Se examina asi la logica interna del programa sin considerar los aspectos
de rendimiento.

El objetivo de la técnica es disefar casos de prueba para que se ejecuten, al menos una vez, todas
las sentencias del programa, y todas las condiciones tanto en su vertiente verdadera como falsa.

Como se ha indicado ya, puede ser impracticable realizar una prueba exhaustiva de todos los
caminos de un programa. Por ello se han definido distintos criterios de cobertura logica, que
permiten decidir qué sentencias o caminos se deben examinar con los casos de prueba. Estos
criterios son:

- Cobertura de Sentencias: Se escriben casos de prueba suficientes para que cada sentencia
en el programa se ejecute, al menos, una vez.

- Cobertura de Decision: Se escriben casos de prueba suficientes para que cada decision en el
programa se ejecute una vez con resultado verdadero y otra con el falso.

- Cobertura de Condiciones: Se escriben casos de prueba suficientes para que cada condicion
en una decision tenga una vez resultado verdadero y otra falso.

- Cobertura Decision/Condicion: Se escriben casos de prueba suficientes para que cada
condicion en una decision tome todas las posibles salidas, al menos una vez, y cada
decision tome todas las posibles salidas, al menos una vez.

- Cobertura de Condicion Multiple: Se escriben casos de prueba suficientes para que todas
las combinaciones posibles de resultados de cada condicion se invoquen al menos una vez.

- Cobertura de Caminos: Se escriben casos de prueba suficientes para que se ejecuten todos
los caminos de un programa. Entendiendo camino como una secuencia de sentencias
encadenadas desde la entrada del programa hasta su salida.

Este ultimo criterio es el que se va a estudiar.

4.2.1.1 COBERTURA DE CAMINOS

La aplicacion de este criterio de cobertura asegura que los casos de prueba disefiados permiten que
todas las sentencias del programa sean ejecutadas al menos una vez y que las condiciones sean
probadas tanto para su valor verdadero como falso.

Una de las técnicas empleadas para aplicar este criterio de cobertura es la Prueba del Camino
Basico. Esta técnica se basa en obtener una medida de la complejidad del diseio procedimental de
un programa (o de la 16gica del programa). Esta medida es la complejidad ciclomatica de McCabe,
y representa un limite superior para el numero de casos de prueba que se deben realizar para
asegurar que se ejecuta cada camino del programa.

Los pasos a realizar para aplicar esta técnica son:
- Representar el programa en un grafo de flujo
- Calcular la complejidad ciclomatica
- Determinar el conjunto basico de caminos independientes
- Derivar los casos de prueba que fuerzan la ejecucion de cada camino.

A continuacion, se detallan cada uno de estos pasos.

N.Juristo/A. Moreno Pag.34

4.2.1.1.1 Representar el programa en un grafo de flujo

El grafo de flujo se utiliza para representar flujo de control légico de un programa. Para ello se
utilizan los tres elementos siguientes:

- Nodos: representan cero, una o varias sentencias en secuencia. Cada nodo comprende como
maximo una sentencia de decision (bifurcacion).

- Aristas: lineas que unen dos nodos.

- Regiones: areas delimitadas por aristas y nodos. Cuando se contabilizan las regiones de un
programa debe incluirse el area externa como una region mas.

- Nodos predicado: cuando en una condicion aparecen uno o mas operadores logicos (AND,
OR, XOR, ...) se crea un nodo distinto por cada una de las condiciones simples. Cada nodo
generado de esta forma se denomina nodo predicado. La Figura 4 muestra un ejemplo de
condicion multiple.

Nodos

IFaORb Predicado
THEN ‘

X
ELSE

y
ENDIF

Figura 4. Representacion de condicion multiple

Asi, cada construccion logica de un programa tiene una representacion. La Figura 5 muestra dichas
representaciones.

N.Juristo/A. Moreno Pag.35

opcién N

Secuenma While @\
CASE /

if
(g \ opcién2 END CASE
Repeat % opcién1

Figura 5. Representacion en grafo de flujo de las estructuras légicas de un programa

La Figura 6 muestra un grafo de flujo del diagrama de modulos correspondiente. Notese como la
estructura principal corresponde a un while, y dentro del bucle se encuentran anidados dos
constructores if.

Aristas

Nodos

]

Region

Figura 6. Ejemplo de grafo de flujo correspondiente a un diagrama de médulos

N.Juristo/A. Moreno Pag.36

4.2.1.1.2 Calcular la complejidad ciclomatica

La complejidad ciclomatica es una métrica del software que proporciona una medida cuantitativa de
la complejidad 16gica de un programa. En el contexto del método de prueba del camino basico, el
valor de la complejidad ciclomatica define el niimero de caminos independientes de dicho
programa, y por lo tanto, el nimero de casos de prueba a realizar. Posteriormente veremos como se
identifican esos caminos, pero primero veamos como se puede calcular la complejidad ciclomatica a
partir de un grafo de flujo, para obtener el nimero de caminos a identificar.

Existen varias formas de calcular la complejidad ciclomatica de un programa a partir de un grafo de
flujo:

1. El nimero de regiones del grafo coincide con la complejidad ciclomatica, V(G).
2. Lacomplejidad ciclomatica, V(G), de un grafo de flujo G se define como

V(G) = Aristas — Nodos + 2
3. Lacomplejidad ciclomatica, V(G), de un grafo de flujo G se define como

V(G) = Nodos Predicado + 1

La Figura 7 representa, por ejemplo, las cuatro regiones del grafo de flujo, obteniéndose asi la
complejidad ciclomatica de 4. Analogamente se puede calcular el nimero de aristas y nodos
predicados para confirmar la complejidad ciclomatica. Asi:

V(G) = Numero de regiones = 4
V(G) = Aristas —Nodos +2=11-9+2 =4
V(G) = Nodos Predicado + 1 =3 +1 =4

Aristas

Region

N.Juristo/A. Moreno Pag.37

Figura 7. Numero de regiones del grafo de flujo

Esta complejidad ciclomatica determina el nimero de casos de prueba que deben ejecutarse para
garantizar que todas las sentencias de un programa se han ejecutado al menos una vez, y que cada
condicion se habra ejecutado en sus vertientes verdadera y falsa. Veamos ahora, como se identifican
estos caminos.

4.2.1.1.3 Determinar el conjunto bésico de caminos independientes

Un camino independiente es cualquier camino del programa que introduce, por lo menos, un nuevo
conjunto de sentencias de proceso o una condicion, respecto a los caminos existentes. En términos
del diagrama de flujo, un camino independiente esta constituido por lo menos por una arista que no
haya sido recorrida anteriormente a la definicion del camino. En la identificacion de los distintos
caminos de un programa para probar se debe tener en cuenta que cada nuevo camino debe tener el
minimo nimero de sentencias nuevas o condiciones nuevas respecto a los que ya existen. De esta
manera se intenta que el proceso de depuracion sea mas sencillo.

El conjunto de caminos independientes de un grafo no es tnico. No obstante, a continuacion, se
muestran algunas heuristicas para identificar dichos caminos:

(a) Elegir un camino principal que represente una funcion valida que no sea un tratamiento de
error. Debe intentar elegirse el camino que atraviese el maximo nimero de decisiones en el
grafo.

(b) Identificar el segundo camino mediante la localizacion de la primera decision en el camino
de la linea basica alternando su resultado mientras se mantiene el maximo nimero de
decisiones originales del camino inicial.

(c¢) Identificar un tercer camino, colocando la primera decision en su valor original a la vez que
se altera la segunda decision del camino basico, mientras se intenta mantener el resto de
decisiones originales.

(d) Continuar el proceso hasta haber conseguido tratar todas las decisiones, intentando
mantener como en su origen el resto de ellas.

Este método permite obtener V(G) caminos independientes cubriendo el criterio de cobertura de
decision y sentencia.

Asi por ejemplo, para la el grafo de la Figura 7 los cuatro posibles caminos independientes
generados serian:

Camino 1: 1-10

Camino 2: 1-2-4-8-1-9
Camino 3: 1-2-3-5-7-8-1-9
Camino 4: 1-2-5-6-7-8-1-9

Estos cuatro caminos constituyen el camino basico para el grafo de flujo correspondiente.

N.Juristo/A. Moreno Pag.38

4.2.1.1.4 Derivar los casos de prueba que fuerzan la ejecucion de cada camino.

El ultimo paso es construir los casos de prueba que fuerzan la ejecucion de cada camino. Una forma
de representar el conjunto de casos de prueba es como se muestra en la Tabla 3.

Numero del Camino | Caso de Prueba Resultado Esperado

Tabla 3. Posible representacion de casos de prueba para pruebas estructurales

En el Anexo L se encuentra un posible ejemplo de pruebas de Caja Blanca para que los alumnos
trabajen con ¢l junto con su solucion. En el Anexo N se muestra un ejercicio propuesto para que los
alumnos se ejerciten en esta técnica de pruebas. El codigo correspondiente ha sido ya utilizado para
la evaluacion con técnicas estaticas.

4.2.2 PRUEBAS DE CAJA NEGRA O FUNCIONALES

También conocidas como Pruebas de Comportamiento, estas pruebas se basan en la especificacion
del programa o componente a ser probado para elaborar los casos de prueba. El componente se ve
como una “Caja Negra” cuyo comportamiento sélo puede ser determinado estudiando sus entradas
y las salidas obtenidas a partir de ellas. No obstante, como el estudio de todas las posibles entradas
y salidas de un programa seria impracticable se selecciona un conjunto de ellas sobre las que se
realizan las pruebas. Para seleccionar el conjunto de entradas y salidas sobre las que trabajar, hay
que tener en cuenta que en todo programa existe un conjunto de entradas que causan un
comportamiento erréoneo en nuestro sistema, y como consecuencia producen una serie de salidas
que revelan la presencia de defectos. Entonces, dado que la prueba exhaustiva es imposible, el
objetivo final es pues, encontrar una serie de datos de entrada cuya probabilidad de pertenecer al
conjunto de entradas que causan dicho comportamiento erroneo sea lo mas alto posible.

Al igual que ocurria con las técnicas de Caja Blanca, para confeccionar los casos de prueba de Caja
Negra existen distintos criterios. Algunos de ellos son:

— Particiones de Equivalencia.
— Analisis de Valores Limite.
— M¢étodos Basados en Grafos.
— Pruebas de Comparacion.

— Analisis Causa-Efecto.

De ellas, las técnicas que estudiaremos son las dos primeras, esto es, Particiones de Equivalencia y
Analisis de Valores Limite.

N.Juristo/A. Moreno Pag.39

4.2.2.1 PARTICIONES DE EQUIVALENCIA

La particion de equivalencia es un método de prueba de Caja Negra que divide el campo de entrada
de un programa en clases de datos de los que se pueden derivar casos de prueba. La particion
equivalente se dirige a una definicion de casos de prueba que descubran clases de errores,
reduciendo asi el ntimero total de casos de prueba que hay que desarrollar.

En otras palabras, este método intenta dividir el dominio de entrada de un programa en un niimero
finito de clases de equivalencia. De tal modo que se pueda asumir razonablemente que una prueba
realizada con un valor representativo de cada clase es equivalente a una prueba realzada con
cualquier otro valor de dicha clase. Esto quiere decir que si el caso de prueba correspondiente a una
clase de equivalencia detecta un error, el resto de los casos de prueba de dicha clase de equivalencia
deben detectar el mismo error. Y viceversa, si un caso de prueba no ha detectado ningtn error, es de
esperar que ninguno de los casos de prueba correspondientes a la misma clase de equivalencia
encuentre ningun error.

El disefio de casos de prueba segun esta técnica consta de dos pasos:
1. Identificar las clases de equivalencia.

2. Identificar los casos de prueba.

4.2.2.1.1 Identificar las clases de equivalencia

Una clase de equivalencia representa un conjunto de estados validos y no validos para las
condiciones de entrada de un programa. Las clases de equivalencia se identifican examinando cada
condicion de entrada (normalmente una frase en la especificacion) y dividiéndola en dos o mas
grupos. Se definen dos tipos de clases de equivalencia, las clases de equivalencia validas, que
representan entradas validas al programa, y las clases de equivalencia no validas, que representan
valores de entrada erroneos. Estas clases se pueden representar en una tabla como la Tabla 4.

Condicion Externa Clases de Equivalencia Validas | Clases de Equivalencia No Validas

Tabla 4. Tabla para la identificacion de clases de equivalencia

En funcion de cual sea la condicion de entrada se pueden seguir las siguientes pautas identificar las
clases de equivalencia correspondientes:

- Si una condiciéon de entrada especifica un rango de valores, identificar una clase de
equivalencia valida y dos clases no validas. Por ejemplo, si un contador puede ir de 1 a 999,
la clase valida seria “1 <= contador <= 999. Mientras que las clases no validas serian
“contador < 1” 'y “contador > 999”

- Si una condicion de entrada especifica un valor o numero de valores, identificar una clase
valida y dos clases no validas. Por ejemplo, si tenemos que puede haber desde uno hasta
seis propietarios en la vida de un coche. Habra una clase valida y dos no validas: “no hay
propietarios” y “mas de seis propietarios”.

N.Juristo/A. Moreno Pag.40

- Si una condicion de entrada especifica un conjunto de valores de entrada, identificar una
clase de equivalencia valida y una no valida. Sin embargo, si hay razones para creer que
cada uno de los miembros del conjunto serd tratado de distinto modo por el programa,
identificar una clase valida por cada miembro y una clase no valida. Por ejemplo, el tipo de
un vehiculo puede ser: autobus, camidn, taxi, coche o moto. Habra una clase valida por
cada tipo de vehiculo admitido, y la clase no valida estard formada por otro tipo de
vehiculo.

- Si una condicion de entrada especifica una situacion que debe ocurrir, esto es, es logica,
identificar una clase valida y una no valida. Por ejemplo, el primer caracter del identificador
debe ser una letra. La clase valida seria “identificador que comienza con letra”, y la clase
invalida seria “identificador que no comienza con letra”.

- En general, si hay alguna razon para creer que los elementos de una clase de equivalencia
no se tratan de igual modo por el programa, dividir la clase de equivalencia entre clases de
equivalencia mas pequeias para cada tipo de elementos.

4.2.2.1.2 Identificar los casos de prueba

El objetivo es minimizar el numero de casos de prueba, asi cada caso de prueba debe considerar
tantas condiciones de entrada como sea posible. No obstante, es necesario realizar con cierto
cuidado los casos de prueba de manera que no se enmascaren faltas. Asi, para crear los casos de
prueba a partir de las clases de equivalencia se han de seguir los siguientes pasos:

1. Asignar a cada clase de equivalencia un numero unico.

2. Hasta que todas las clases de equivalencia hayan sido cubiertas por los casos de prueba, se
tratara de escribir un caso que cubra tantas clases validas no incorporadas como sea posible.

3. Hasta que todas las clases de equivalencia no validas hayan sido cubiertas por casos de
prueba, escribir un caso para cubrir una Unica clase no valida no cubierta.

La razén de cubrir con casos individuales las clases no validas es que ciertos controles de entrada
pueden enmascarar o invalidar otros controles similares. Por ejemplo, si tenemos dos clases validas:
“introducir cantidad entre 1 y 99” y “seguir con letra entre A y Z”, el caso 105 I (dos errores) puede
dar como resultado 105 fuera de rango de cantidad, y no examinar el resto de la entrada no
comprobando asi la respuesta del sistema ante una posible entrada no valida.

4.2.2.2 ANALISIS DE VALORES LIMITE

La experiencia muestra que los casos de prueba que exploran las condiciones limite producen mejor
resultado que aquellos que no lo hacen. Las condicione limite son aquellas que se hayan en los
margenes de la clase de equivalencia, tanto de entrada como de salida. Por ello, se ha desarrollado
el analisis de valores limite como técnica de prueba. Esta técnica nos lleva a elegir los casos de
prueba que ejerciten los valores limite.

Por lo tanto, el analisis de valores limite complementa la técnica de particion de equivalencia de
manera que:

- En lugar de seleccionar cualquier caso de prueba de las clases validas e invalidas, se eligen
los casos de prueba en los extremos.

N.Juristo/A. Moreno Pag.41

- En lugar de centrase s6lo en el dominio de entrada, los casos de prueba se disefian también
considerando el dominio de salida.

Las pautas para desarrollar casos de prueba con esta técnica son:

- Si una condicién de entrada especifica un rango de valores, se disefiaran casos de prueba
para los dos limites del rango, y otros dos casos para situaciones justo por debajo y por
encima de los extremos.

- Si una condicién de entrada especifica un niimero de valores, se disefian dos casos de
prueba para los valores minimo y maximo, ademas de otros dos casos de prueba para
valores justo por encima del méximo y justo por debajo del minimo.

- Aplicar las reglas anteriores a los datos de salida.

- Sila entrada o salida de un programa es un conjunto ordenado, habra que prestar atencion a
los elementos primero y ltimo del conjunto.

El Anexo M presenta un ejemplo de prueba de caja negra con Particiones de Equivalencia y
Andlisis de Valores Limite para que los alumnos practiquen con la técnica. En el Anexo O se
muestra un ejercicio propuesto para que los alumnos ejerciten. El codigo correspondiente ha sido ya
utilizado para la evaluacion con técnicas estaticas.

4.2.3 ESTRATEGIA DE PRUEBAS

La estrategia que se ha de seguir a la hora de evaluar dindmicamente un sistema software debe
permitir comenzar por los componentes mas simples y mas pequefios e ir avanzando
progresivamente hasta probar todo el software en su conjunto. Mas concretamente, los pasos a
seguir son:

1. Pruebas Unitarias. Comienzan con la prueba de cada modulo.

2. Pruebas de Integracion. A partir del esquema del disefio, los modulos probados se vuelven a
probar combinados para probar sus interfaces.

3. Prueba del Sistema. El software ensamblado totalmente con cualquier componente
hardware que requiere se prueba para comprobar que se cumplen los requisitos funcionales.

4. Pruebas de Aceptacion. El cliente comprueba que el software funciona segun sus
expectativas.

4.2.4 PRUEBAS UNITARIAS

La prueba de unidad es la primera fase de las pruebas dindmicas y se realizan sobre cada modulo
del software de manera independiente. El objetivo es comprobar que el modulo, entendido como
una unidad funcional de un programa independiente, estd correctamente codificado. En estas
pruebas cada modulo sera probado por separado y lo hara, generalmente, la persona que lo creo. En
general, un moédulo se entiende como un componente software que cumple las siguientes
caracteristicas:

N.Juristo/A. Moreno Pag.42

— Debe ser un bloque basico de construccion de programas.
— Debe implementar una funcion independiente simple.

— Podra ser probado al cien por cien por separado.

— No debera tener mas de 500 lineas de codigo.

Tanto las pruebas de caja blanca como las de caja negra han de aplicarse para probar de la manera
mas completa posible un modulo. Notese que las pruebas de caja negra (los casos de prueba) se
pueden especificar antes de que mddulo sea programado, no asi las pruebas de caja blanca.

4.2.5 PRUEBAS DE INTEGRACION

Atn cuando los modulos de un programa funcionen bien por separado es necesario probarlos
conjuntamente: un modulo puede tener un efecto adverso o inadvertido sobre otro modulo; las
subfunciones, cuando se combinan, pueden no producir la funcion principal deseada; la imprecision
aceptada individuamente puede crecer hasta niveles inaceptables al combinar los modulos; los datos
pueden perderse o malinterpretarse entre interfaces, etc.

Por lo tanto, es necesario probar el software ensamblando todos los mddulos probados previamente.
Esta es el objetivo de la pruebas de integracion.

A menudo hay una tendencia a intentar una integracion no incremental; es decir, a combinar todos
los modulos y probar todo el programa en su conjunto. El resultado puede ser un poco cadtico con
un gran conjunto de fallos y la consiguiente dificultad para identificar el modulo (o modulos) que
los provoco.

En contra, se puede aplicar la integracion incremental en la que el programa se prueba en pequeiias
porciones en las que los fallos son mas faciles de detectar. Existen dos tipos de integracion
incremental, la denominada ascendente y descendente. Veamos los pasos a seguir para cada caso:

Integracion incremental ascendente:
1. Se combinan los modulos de bajo nivel en grupos que realicen una subfuncion especifica

2. Se escribe un controlador (un programa de control de la prueba) para coordinar la entrada y
salida de los casos de prueba.

Se prueba el grupo

4. Se eliminan los controladores y se combinan los grupos moviéndose hacia arriba por la
estructura del programa.

La Figura 8 muestra este proceso. Concretamente, se forman los grupos 1, 2 y 3 de moddulos
relacionados, y cada uno de estos grupos se prueba con el controlador C1, C2 y C3 respectivamente.
Seguidamente, los grupos 1 y 2 son subordinados de Ma, luego se eliminan los controladores
correspondientes y se prueban los grupos directamente con Ma. Analogamente se procede con el
grupo 3 eliminando el controlador C3 y probando el grupo directamente con Mb. Tanto Ma y Mb se
integran finalmente con el moédulo Mc y asi sucesivamente.

N.Juristo/A. Moreno Pag.43

]
.

Grupo 1

Grupo 2

Figura 8. Integracion ascendente

Integracion incremental descendente:

1. Se usa el modulo de control principal como controlador de la prueba, creando resguardos
(médulos que simulan el funcionamiento de los médulos que utiliza el que esta probando)
para todos los médulos directamente subordinados al modulo de control principal.

2. Dependiendo del enfoque ¢ integracion elegido (es decir, primero-en-profundidad, o

primero-en-anchura) se van sustituyendo uno a uno los resguardos subordinados por los
modulos reales.

Se llevan a cabo pruebas cada vez que se integra un nuevo modulo.

4. Tras terminar cada conjunto de pruebas, se reemplaza otro resguardo con el modulo real.

La Figura 9 muestra un ejemplo de integracion descendiente. Supongamos que se selecciona una
integracion descendiente por profundidad, y que por ejemplo se prueba M1, M2 y M4. Seria
entonces necesario preparar resguardos para M5 y M6, y para M7 y M3. Estos resguardos se ha
representado en la figura como RS, R6, R7 y R4 respectivamente. Una vez realizada esta primera

prueba se sustituiria RS por M5, seguidamente R6 por M6, y asi sucesivamente hasta probar todos
los modulos.

N.Juristo/A. Moreno Pag.44

Figura 9. Integracion descendiente

Para la generacion de casos de prueba de integracion, ya sea descendente o ascendente se utilizan
técnicas de caja negra.

4.2.6 PRUEBAS DEL SISTEMA

Este tipo de pruebas tiene como proposito ejercitar profundamente el sistema para verificar que se
han integrado adecuadamente todos los elementos del sistema (hardware, otro software, etc.) y que
realizan las funciones adecuadas. Concretamente se debe comprobar que:

- Se cumplen los requisitos funcionales establecidos.
- El funcionamiento y rendimiento de las interfaces hardware, software y de usuario.
- Laadecuacion de la documentacion de usuario.
- Rendimiento y respuesta en condiciones limite y de sobrecarga.
Para la generacion de casos de prueba de sistema se utilizan técnicas de caja negra.

Este tipo de pruebas se suelen hacer inicialmente en el entrono del desarrollador, denominadas
Pruebas Alfa, y seguidamente en el entrono del cliente denominadas Pruebas Beta.

4.2.7 PRUEBAS DE ACEPTACION

A la hora de realizar estas pruebas, el producto esta listo para implantarse en el entorno del cliente.
El usuario debe ser el que realice las pruebas, ayudado por personas del equipo de pruebas, siendo
deseable, que sea el mismo usuario quien aporte los casos de prueba.

Estas pruebas se caracterizan por:

- Participacion activa del usuario, que debe ejecutar los casos de prueba ayudado por
miembros del equipo de pruebas.

- Estan enfocadas a probar los requisitos de usuario, o mejor dicho a demostrar que no se
cumplen los requisitos, los criterios de aceptacion o el contrato. Si no se consigue demostrar
esto el cliente debera aceptar el producto

- Corresponden a la fase final del proceso de desarrollo de software.

N.Juristo/A. Moreno Pag.45

Es muy recomendable que las pruebas de aceptacion se realicen en el entorno en que se va a
explotar el sistema (incluido el personal que lo maneje). En caso de un producto de interés general,
se realizan pruebas con varios usuarios que reportaran sus valoraciones sobre el producto.

Para la generacion de casos de prueba de aceptacion se utilizan técnicas de caja negra.

4.2.8 PRUEBAS DE REGRESION

La regresion consiste en la repeticion selectiva de pruebas para detectar fallos introducidos durante
la modificacion de un sistema o componente de un sistema. Se efectuaran para comprobar que los
cambios no han originado efectos adversos no intencionados o que se siguen cumpliendo los
requisitos especificados.

En las pruebas de regresion hay que:
- Probar integramente los mdédulos que se han cambiado.

- Decidir las pruebas a efectuar para los médulos que no han cambiado y que han sido
afectados por los cambios producidos.

Este tipo de pruebas ha de realizarse, tanto durante el desarrollo cuando se produzcan cambios en el
software, como durante el mantenimiento.

N.Juristo/A. Moreno Pag.46

5. PRUEBAS ORIENTADAS A OBJETOS

En las secciones anteriores se ha presentado el proceso de pruebas orientado al concepto general de
modulo. Sin embargo, en el caso de la orientacion a objetos (OO) es el concepto de clase y objeto el
que se utiliza. Veamos a continuacion, algunas particularidades de las pruebas para el caso de la
00.

5.1 PRUEBA DE UNIDAD

Al tratar software OO cambia el concepto de unidad. El encapsulamiento dirige la definicion de
clases y objetos. Esto significa que cada clase e instancia de clase (objeto) empaqueta los atributos
(datos) y las operaciones (también conocidas como métodos o servicios) que manipulan estos datos.
Por lo tanto, en vez de modulos individuales, la menor unidad a probar es la clase u objeto
encapsulado. Una clase puede contener un cierto nimero de operaciones, y una operacion particular
puede existir como parte de un niimero de clases diferentes. Por tanto, el significado de prueba de
unidad cambia ampliamente frente al concepto general visto antes.

De esta manera, la prueba de clases para el software OO es el equivalente a la prueba de unidad
para software convencional. A diferencia de la prueba de unidad del software convencional, la cual
tiende a centrarse en el detalle algoritmico de un modulo y los datos que fluyen a lo largo de la
interfaz de éste, la prueba de clases para software OO esta dirigida por las operaciones encapsuladas
en la clase y el estado del comportamiento de la clase. Asi, la prueba de una clase debe haber
probado mediante las correspondientes técnicas de caja blanca y caja negra el funcionamiento de
cada uno de los métodos de dicha clase. Ademas, se deben haber generado casos de prueba para
probar valores representativos de los atributos de dicha clase (esto puede realizarse aplicando la
técnica de clases de equivalencia y analisis de valores limite).

5.2 PRUEBA DE INTEGRACION

Debido a que el software OO no tiene una estructura de control jerarquica, las estrategias
convencionales de integracion ascendente y descendente poseen un significado poco relevante en
este contexto.

Generalmente se pueden encontrar dos estrategias diferentes de pruebas de integracion en sistemas
OO. La primera, prueba basada en hilos (o threads), integra el conjunto de clases necesario para
responder a una entrada o evento del sistema. Cada hilo se integra y prueba individualmente. El
segundo enfoque para la integracion, prueba basada en el uso. Esta prueba comienza la
construccion del sistema integrando y probando aquellas clases (llamadas clases independientes)
que usan muy pocas de las clases. Después de probar las clases independientes, se comprueba la
proxima capa de clases, llamadas clases dependientes, que usan las clases independientes. Esta
secuencia de capas de pruebas de clases dependientes continia hasta construir el sistema por
completo.

Notese como la prueba basada en hilos proporciona una estrategia mas ordenada para realizar la
prueba que la prueba basada en el uso. Esta prueba basada en hilos, suele aplicarse utilizando los
diagramas de secuencia de objetos que disefian cada evento de entrada al sistema.

Concretamente, se pueden realizar los siguientes pasos para generar casos de prueba a partir de un
diagrama de secuencias:

N.Juristo/A. Moreno Pag.47

1. Definir el conjunto de secuencias de mensajes a partir del diagrama de secuencia.
Cada secuencia ha de comenzar con un mensaje m sin predecesor (habitualmente,
un mensaje enviado al sistema por un actor), y estara formada por el conjunto de
mensajes cuya ejecucion dispara .

2. Analizar sub-secuencias de mensajes a partir de posibles caminos condicionales en
los diagramas de secuencia.

3. Identificar los casos de prueba que se han de introducir al sistema para que se
ejecuten las secuencias de mensajes anteriores, en funcion de los métodos y las
clases afectadas por la secuencia. Tanto valores validos como invalidos deberian
considerarse.

Notese como el conjunto de casos de prueba puede aumentar exponencialmente si se trabaja sobre
un sistema OO con un nimero elevado de interacciones. Por lo tanto, es necesario tener en cuenta
este factor a la hora de realizar el diseno.

5.3 PRUEBA DE SISTEMA

En el nivel de prueba del sistema, los detalles de las conexiones entre clases no afectan. El software
debe integrarse con los componentes hardware correspondientes y se ha de comprobar el
funcionamiento del sistema completo acorde a los requisitos. Como en el caso del software
convencional, la validacion del software OO se centra en las acciones visibles del usuario y las
salidas del sistema reconocibles por éste. Para asistir en la determinacion de casos de prueba de
sistema, el ejecutor de la prueba debe basarse en los casos de uso que forman parte del modelo de
analisis. El caso de uso brinda un escenario que posee una alta probabilidad con errores encubiertos
en los requisitos de interaccion del cliente. Los métodos convencionales de prueba de caja negra,
pueden usarse para dirigir estas pruebas.

5.4 PRUEBA DE ACEPTACION

La prueba de aceptacion en un sistema OO es semejante a la prueba de aceptacion en un software
tradicional. ElI motivo es que el objetivo de este tipo de prueba es comprobar si el cliente esta
satisfecho con el producto desarrollado y si este producto cumple con sus expectativas, en términos
de los errores que genera y de la funcionalidad que suministra. Al igual que las pruebas
convencionales seran los clientes quienes realicen estas pruebas y suministren los casos de prueba
correspondientes.

N.Juristo/A. Moreno Pag.48

6. HERRAMIENTAS DE PRUEBA

A continuacion se muestran algunas herramientas que permiten automatizar en cierta medida el
proceso de prueba.

6.1 HERRAMIENTA PARA EL ANALISIS ESTATICO DE
CODIGO FUENTE

Jtest

] PARASOFT

Las caracteristicas de esta herramienta son las siguientes:

= Jtest comprueba automaticamente la construccion del codigo fuente ("pruebas de caja
blanca"), la funcionalidad del codigo ("pruebas de caja negra"), y mantiene la integridad del
codigo (pruebas de regresion).

= Se aplica sobre clases Herram Java y JSP.

6.2 HERRAMIENTAS PARA PRUEBAS DE CARGA Y STRESS

Openl.oad Tester

Las caracteristicas de esta herramienta son las siguientes:

= OpenLoad Tester es una herramienta de optimizacion de rendimiento basada en navegador
para pruebas de carga y stress de sitios web dinamicos.

= Permite elaborar escenarios de ejecucion y ejecutarlos de forma repetida, simulando la
carga de un entorno de produccion real de nuestra aplicacion como si multiples usuarios
estuvieran usandola

QUEST
SOFTWARE

business partner
Benchmark Factory

Las caracteristicas de esta herramienta son las siguientes:

N.Juristo/A. Moreno Pag.49

= Benchmark Factory es una herramienta de prueba de carga y capacity planning, capaz de
simular el acceso de miles de usuarios a sus servidores de bases de datos, archivos, internet
y correo, localizando los posibles cuellos de botella y aislar los problemas relacionados con
sobrecargas del sistema

6.3 HERRAMIENTA PARA LA AUTOMATIZACION DE LAS
PRUEBAS FUNCIONALES

QUEST
SOFTWARE
business partner
DataFactory

Las caracteristicas de esta herramienta son las siguientes:

= DataFactory, ayuda a la creacion automatica de juegos de ensayo o casos de prueba
basados en la funcionalidad de las aplicaciones (casos de uso), que facilitan la labor de
tener que crearlos manualmente y tipicamente, se utilizan junto a las herramientas de
pruebas de carga.

6.4 HERRAMIENTAS DE DIAGNOSTICO

QUEST
SOFTWARE

business partner
PerformaSure

Las caracteristicas de esta herramienta son las siguientes:

* PerfomaSure, es una herramienta de diagnostico de rendimiento para el analisis en
entornos distribuidos J2EE, que permite el seguimiento de los problemas de rendimiento
detectados en tiempo real, desde la transaccion del usuario final en fase de produccion,
hasta la linea de codigo fuente que genera el problema.

QUEST

SOFTWARE
Spotlight business partner
potlig

N.Juristo/A. Moreno Pag.50

Las caracteristicas de esta herramienta son las siguientes:

= Spotlight, en sus versiones para Servidores de Aplicaciones, Servidores Web, Bases de

datos, Sistemas Operativos, etc. es la herramienta visual para la deteccion en tiempo real, de
los cuellos de botella en estos componentes. Una vez que identifica la causa de estos
problemas, proporciona la informacion y consejos necesarios, para su resolucion.

6.5 HERRAMIENTA DE RESOLUCION Y AFINADO

QUEST
SOFTWARE

business partner
JProbe

= Esta herramienta, permite detectar los 'puntos calientes' de los componentes de una
aplicacion JAVA, tales como el uso de la memoria, el uso del CPU, los hilos de
ejecucion,... y a partir de ellos, bajar al nivel del codigo fuente que los provoca ofreciendo
una serie de consejos o buenas practicas de codificacion para la resolucion del problema.

N.Juristo/A. Moreno Pag.51

