Ingemerlu del soﬂwure

_x_H :ﬁ UE!_, = J | BAVAY)

by FAaBI R Séptima edicion

Roger S. Pressman

www.FreeLibros.me

Ingenieria del software

UN ENFOQUE PRACTICO

SEPTIMA EDICION

Roger S. Pressman, Ph.D.
University of Connecticut

i

MEXICO » BOGOTA « BUENOS AIRES ¢ CARACAS ¢ GUATEMALA * MADRID
NUEVA YORK ¢ SAN JUAN ¢ SANTIAGO * SAO PAULO * AUCKLAND ¢ L ONDRES « MILAN
MONTREAL ¢ NUEVA DELHI « SAN FRANCISCO ¢ SINGAPUR ¢ ST. LOUIS » SIDNEY « TORONTO

www.FreelLibros.me

Director Higher Education: Miguel Angel Toledo Castellanos
Editor sponsor: Pablo Roig Vazquez

Coordinadora editorial: Marcela I. Rocha Martinez

Editora de desarrollo: Maria Teresa Zapata Terrazas
Supervisor de produccion: Zeferino Garcia Garcia

Traductores: Victor Campos Olguin
Javier Enriquez Brito
Revision técnica: Carlos Villegas Quezada
Barbaro Jorge Ferro Castro

INGENIERIiA DEL SOFTWARE. UN ENFOQUE PRACTICO
Séptima edicion

Prohibida la reproduccion total o parcial de esta obra,
por cualquier medio, sin la autorizacion escrita del editor.

% Educacion

DERECHOS RESERVADOS © 2010, 2005, 2002 respecto a la tercera edicion en espanol por
McGRAW-HILL INTERAMERICANA EDITORES, S.A. DE C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.

Prolongacion Paseo de la Reforma 1015, Torre A

Piso 17, Colonia Desarrollo Santa Fe,

Delegacion Alvaro Obregon

C.P. 01376, México, D. F.

Miembro de la Camara Nacional de la Industria Editorial Mexicana, Reg. Num. 736

ISBN: 978-607-15-0314-5
(ISBN edicion anterior: 970-10-5473-3)

Traducido de la séptima edicion de SOFTWARE ENGINEERING. A PRACTITIONER’'S APPROACH.
Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights
reserved.

978-0-07-337597-7

1234567890 109876543210

Impreso en México Printed in Mexico

The McGraw-Hill companies

www.FreelLibros.me

PARTE TRES

CONTENIDO

ADMINISTRACION DE LA CALIDAD 337

CAPITULO 14 CONCEPTOS DE CALIDAD 338

xvii

141 3Qué es calidad? 339
14.2 Calidad del software 340
14.2.1 Dimensiones de la calidad de Garvin - 341
14.2.2 Factores de la calidad de McCall 342
14.2.3 Factores de la calidad ISO 9126 343
14.2.4 Facfores de calidad que se persiguen 343
14.2.5 Tansicién @ un punto de vista cuantifativo 344
14.3 El dilema de la calidad del software 345
14.3.1 Software “suficientemente bueno” 345
14.3.2 El costo de la calidad 346
14.3.3 Riesgos 348
14.3.4 Negligencia y responsabilidad 348
14.3.5 Cadlidad y seguridad 349
14.3.6 El efecto de las acciones de la administracién 349
14.4 lograr la calidad del software 350
14.4.1 Métodos de la ingenieria de software 350
14.4.2 Técnicas de administracion de proyectos 350
14.4.3 Control de calidad 351
14.4.4 Aseguramiento de la calidad 351
14.5 Resumen 351
PROBLEMAS Y PUNTOS POR EVALUAR 352
[ECTURAS Y FUENTES DE INFORMACION ADICIONALES 352

CAPITULO 15 TECNICAS DE REVISION 354

15.1 Efecto de los defectos del software en el costo 355
15.2 Amplificacién y eliminacion del defecto 356
153 Métricas de revision y su empleo 357
15.3.1 Andlisis de las métricas 358
15.3.2 Eficacia del costo de las revisiones 358
154 Revisiones: espectro de formalidad 359
15.5 Revisiones informales 361
15.6 Revisiones técnicas formales 362
15.6.1 lareunién de revision 363
15.6.2 Reporte y registro de la revisién 363
15.6.3 lineamientos para la revision 364
15.6.4 Revisiones orientadas al muestreo 365
15.7 Resumen 366
PROBLEMAS Y PUNTOS POR EVALUAR 36/
[ECTURAS Y FUENTES DE INFORMACION ADICIONALES 367

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE

368

16.1 Anfecedentes 369
16.2 Elementos de aseguramiento de la calidad del software 370
16.3 Tareas, mefas y métricas del ACS 371
16.3.1 Tareas del ACS 371
16.3.2 Melas, afributos y métricas 372
16.4 Enfoques formales al ACS 373
16.5 Aseguramiento estadistico de la calidad del software 374
16.5.1 Ejemplo general 374
16.5.2 Seis Sigma para la ingenieria de software 375
16.6 Confiabilidad del software 376
16.6.1 Mediciones de la confiobilidad y disponibilidad 377
16.6.2 Seguridad del software 378

www.FreelLibros.me

CAPITULO

TECNICAS
DE REVISION

CONCEPTOS CLAVE as revisiones del software son un “filtro” para el proceso del software. Es decir, se aplican
en varios puntos durante la ingenieria de software y sirven para descubrir errores y defec-
tos a fin de poder eliminarlos. Las revisiones del software “purifican” los productos del

trabajo de la ingenieria de software, incluso los modelos de requerimientos y diseno, codigo y

datos de prueba. Freedman y Weinberg [Fre90] analizan del modo siguiente la necesidad de

hacer revisiones:

amplificacion del defecto . . . 356
defectos...............355
densidad del error.358
cee..355
registro363

eIrores. ..ccceeeee

metr!c?'s 357 El trabajo técnico necesita las revisiones por la misma razon que los lapices necesitan borradores:
revision0....) . o S
reporte.363 errar es humano. La segunda razon por la que son necesarias las revisiones técnicas es porque, si bien

TS las personas son buenas para detectar algunos de sus propios errores, muchas clases de ellos pasan

eficacia del costo de las. . . 358 desapercibidos con mas facilidad para quien los comete que para otras personas. Por tanto, este pro-
informales361

orientadas al muestreo . . . 365 , L
HECNICTS o n e e 362 Oh, quiera algun Dios €l regalo darnos

ec'ousuoﬁ

Las revisiones son como filtros en ef
flujo del trabajo def proceso de
software. Si son muy pocas, el flujo
queda “sucio”. Si son demasiadas,
se hace fento hasta detenerse. Utilice
métricas para determinar cudles son
fas revisiones que funcionan y haga
énfasis en elfas. Elimine del flujo los
revisiones ineficaces, con objeto de
acelerar ef proceso.

ceso de revision es la respuesta a la oracion de Robert Burns:

de vernos a nosotros como los demds nos ven
Una revision —cualquiera — es una forma de utilizar la diversidad de un grupo para lo siguiente:

1. Resaltar las mejoras necesarias en el producto que elabord una sola persona o equipo;

2. Confirme aquellas partes de un producto en las que no se desea o no se necesita hacer una
mejora;

3. Realice el trabajo técnico de calidad mas uniforme, o al menos mas predecible, que pueda lograrse
sin hacer revisiones, a fin de que el trabajo técnico sea mas manejable.

Como parte de la ingenieria de software, pueden realizarse muchos diferentes tipos de revi-
siones. Cada uno tiene su lugar. Una reunion informal alrededor de la maquina del café es una
forma de revision si se analizan problemas técnicos. La presentacion formal de la arquitectura
del software a un publico de clientes, administradores y técnicos también es una forma de revi-

UNa

ahorran tiempo, reduciendo la cantidad de repeticiones
que se requerirén hacia el final del proyecto.
éCudles son los pasos? El enfoque de las revisiones

¢Qué es? Conforme se desarrollen los pro-
ductos del trabajo de la ingenieria de software
se cometerdn errores. No es vergonzoso, mien-

MIRADA
RAPIDA

tras se trate de detectarlos y corregirlos con
ahinco —con mucho ahinco— antes de que lleguen a los
usuarios finales. Las revisiones técnicas son el mecanismo
mds eficaz para detectar los errores en una efapa tempra-
na del proceso de software.

&¢Quién lo hace? Son los ingenieros de software quienes

realizan una revisién técnica, también llamada revisién de
pares, con sus colegas.

¢Por qué es importante? Si encuentra un error al prin-

354

cipio del proceso, es menos caro corregirlo. Ademds, los
errores tienen un modo de amplificarse a medida que
avanza el proceso. Por ello, un error relativamente peque-
fio que se deje sin atender al comenzar el proceso se
amplifica en un conjunto més grande de errores en una
etapa posterior del proyecto. Finalmente, las revisiones

variaré en funcién del grado de formalidad que se elija.
En general, se utilizan seis etapas, aunque no todas se
emplean siempre: planeacién, preparacién, estructurar la
reunién, resaltar los errores, hacer las correcciones (fuera
de la revisién) y verificar que las correcciones se hayan
hecho en forma apropiada.

&Cudl es el producto final? El resultado de una revisién

es una lista de conceptos o errores descubiertos. Ademds,
también se indica el estado técnico del producto final.

¢Como me aseguro de que lo hice bien? En primer

lugar, seleccione el tipo de revisién que sea apropiada
para su cultura de desarrollo. Siga los lineamientos que
lleven o ejecutar revisiones exitosas. Si éstas conducen a
un software de alta calidad, lo habrd hecho bien.

www.FreelLibros.me

15.1

CAPITULO 15 TECNICAS DE REVISION 355

sion. Sin embargo, en este libro nos centramos en las revisiones técnicas o por pares, ejemplifi-
cadas por las revisiones casuales, walkthroughs e inspecciones. Desde el punto de vista del con-
trol de calidad, una revision técnica (RT) es el filtro mas eficaz. Realizado por ingenieros de
software (y de otro tipo) para ingenieros de software, la RT es un medio eficaz para detectar
errores y mejorar la calidad.

EFECTO DE LOS DEFECTOS DEL SOFTWARE EN EL COSTO

En el contexto del proceso del software, los términos defecto y falla son sinbnimos. Los dos im-
plican un problema de calidad descubierto después de haberse liberado el software a los usua-
rios finales (0 a otra actividad estructural del proceso del software). En capitulos anteriores se
empled el término error para denotar un problema de calidad descubierto por ingenieros de
software (o de otra clase) antes de entregar el software al usuario final (0 a alguna actividad
estructural del proceso del software).

Equivocaciones, errores y defectos

INFORMACION

Lo meta del control de calidad del software, y en un senti-

do mds amplio de la administracién de la calidad en gene-
ral, es eliminar los problemas de calidad que se encuentren en el soft-
ware. Se hace referencia a estos problemas con diferentes nombres:
equivocaciones, fallas, errores o defectos, por mencionar algunos.
2Son sinénimos estos términos o hay diferencias sutiles entre ellos?

En este libro se hace una distincién clara entre un error (problema
de calidad que se detecta antes de que el software se entregue a los
usuarios finales) y un defecto (problema de calidad que se encuentra
después de haber entregado el software a los usuarios finales'). Esta
distincién se hace porque los errores y defectos tienen muy distinto
efecto econdmico, empresarial, sicolégico y humano. Como ingenie-
ros de software, queremos encontrar y corregir tantos errores como
sea posible antes de que el consumidor o el usuario final los encuen-
tren. Queremos evitar los defectos porque hacen (justificadamente)
que el personal de software se vea mall.

Sin embargo, es importante observar que la distincién temporal

@re errores y defectos que se hace en este libro no constituye la prin-

cipal forma de pensar. El consenso general de la comunidad de inge-
nieria de software es que defectos, errores, fallas y equivocaciones
son sinénimos. Es decir, el punto en el tiempo en el que se encontré el
problema no tiene que ver con el #érmino que se usa para describirlo.
Parte de la argumentacién a favor de este punto de vista es que en
ocasiones es dificil hacer una distincién clara entre el antes y el des-
pués de la liberacién (por ejemplo, considere un proceso incremental
en un desarrollo dgil).

Sin que importe el modo en el que se elija interpretar estos térmi-
nos, hay que reconocer que el momento en el que se descubre un
problema si importa, y que los ingenieros de software deben tratar de
detectar con ahinco —con mucho chinco— los problemas antes de
que sus clientes y usuarios finales los encuentren. Si el lector esté més
interesado en este tema, puede hallar un andlisis razonablemente
completo de la terminologia acerca de las “equivocaciones” en la
direccién www.softwaredevelopment.ca/bugs.shiml

J

ec'ousuog

H objetivo principal de una revisidn
téenica formal es detectar Jos errores
antes de que pasen a ofra actividod
de I ingenieria de software o de que
se entreguen of usuario final,

El objetivo principal de las revisiones técnicas es encontrar errores durante el proceso a fin
de que no se conviertan en defectos después de liberar el software. El beneficio obvio de las
revisiones técnicas es el descubrimiento temprano de los errores, de modo que no se propaguen
a la siguiente etapa del proceso del software.

Varios estudios de la industria indican que las actividades de disefio introducen de 50 a 65
por ciento de todos los errores (y en realidad de todos los defectos) durante el proceso del soft-
ware. Sin embargo, las técnicas de revision han demostrado tener una eficacia de hasta 75 por
ciento [Jon86] para descubrir fallas del disefio. Al detectar y eliminar un gran porcentaje de estos

1 Sise considera una mejora en el proceso del software, un problema de calidad que se propague de una actividad
estructural del proceso (como el modelado) a otra (como la construccion) también se llama “defecto”, porque
debe encontrarse el problema antes de que un producto del trabajo (como un modelo del disefio) se “libere” a la
siguiente actividad.

www.FreelLibros.me

356

PARTE TRES ADMINISTRACION DE LA CALIDAD

Modelo de
amplificacién
del defecto

15.2

2 ci

“Dicen los médicos que en sus
inicios algunas enfermedades
son fdciles de curar pero dificiles
de reconocer. ... mas con el paso
del tiempo, si no se detectaron y
trataron al principio, se vuelven
faciles de reconocer pero difici-
les de curar.”

Nicolds Maquiavelo

Etapa del desarrollo

Defectos Deteccién
Errores pasados por alto :
Errores de la : & Porcentaje Errores
etapa anterior " de eficiencia e pasan
Errores amplificados 1 : x en la a | pt
defeccion GS.G ?eifo
iguiente
Nuevos errores generados de errores

errores, el proceso de revision reduce de manera sustancial el costo de las actividades posterio-
res en el proceso del software.

AMPLIFICACION Y ELIMINACION DEL DEFECTO

Para ilustrar la generacion y deteccion de errores durante las acciones de disefio y generacion
de codigo de un proceso de software, puede usarse un modelo de amplificacién del defecto
[[BM81]. En la figura 15.1 se ilustra esquematicamente el modelo. Un cuadro representa una
accion de la ingenieria de software. Durante la accion, los errores se generan de manera inad-
vertida. La revision puede fracasar en descubrir los errores nuevos que se generan y los come-
tidos en etapas anteriores, lo que da como resultado cierto numero de errores pasados por alto.
En ciertos casos, los errores de etapas anteriores ignorados son amplificados (en un factor x de
amplificacion) por el trabajo en curso. Las subdivisiones de los cuadros representan a cada una
de estas caracteristicas y al porcentaje de eficiencia de la deteccion de errores, que es una fun-
cion de la profundidad de la revision.

La figura 15.2 ilustra un ejemplo hipotético de amplificacion del defecto para un proceso de
software en el que no se hacen revisiones. En la figura, se supone que en cada etapa de prueba
se detecta y corrige 50 por ciento de todos los errores de entrada sin que se introduzcan nuevos
errores (suposicion optimista). Diez defectos preliminares de disefio se amplifican a 94 errores
antes de que comiencen las pruebas. Se liberan al campo 12 errores latentes (defectos). La figura
15.3 considera las mismas condiciones, excepto porque se efectuan revisiones del disefio y coO-
digo como parte de cada accion de la ingenieria de software. En este caso, son 10 los errores

Amplificacién
del defecto. Sin
revisiones

Disefio preliminar

0 Disefio de detalle
o L
0 0% L 6 Cédigo/prueba unitaria
10 AIZxT5 | 0% 3229 10
x=1.5 5
25 27%3 | 20m 2
94 Prueba de integracion 25

Prueba de validacién
47 A la integracién

50% 1 Prueba del sistema
0 50% £|_'
0 0 50% 12

Errores latentes
(defectos)

www.FreelLibros.me

CAPITULO 15 TECNICAS DE REVISION 357

Amplificacién
del defecto. Se
efectian
revisiones

15.3

Disefio preliminar

0 Disefio de detalle
0 70% 32 2 Cédigo/prueba unitaria
10 |_‘. 1015 [50%H=2] s
25 |£ 1003 [60% 24
24 Prueba de integracién 25

Prueba de validacion
| o |12 A la integracién
0 50% | Prueba del sistema
0 0 50% 2

0 —l— 0 |s0% 3

Errores latentes
(defectos)

iniciales de disefio preliminar (arquitectura) que se amplifican a 24 antes de comenzar las prue-
bas. Solo existen tres errores latentes. Pueden establecerse los costos relativos asociados con el
descubrimiento y correccion de errores, asi como el costo general (con y sin revision para nues-
tro ejemplo hipotético). El numero de errores detectados durante cada una de las etapas citadas
en las figuras 15.2 y 15.3 se multiplica por el costo que implica eliminar un error (1.5 unidades
de costo para el disefio, 6.5 unidades de costo antes de las pruebas, 15 unidades de costo durante
las pruebas y 67 unidades de costo después de la entrega).? Con estos datos, el costo total del
desarrollo y mantenimiento cuando se efectiian revisiones es de 783 unidades de costo. Cuando
no se hacen revisiones, el costo total es de 2 177 unidades, casi tres veces mas caro.

Debe dedicarse tiempo y esfuerzo a la realizacion de revisiones y su organizacion de desa-
rrollo debe destinar el dinero para ello. Sin embargo, los resultados del ejemplo anterior dejan
pocas dudas acerca de lo que puede pagar ahora o de que después debera pagar mucho mas.

METRICAS DE REVISION Y SU EMPLEO

Las revisiones técnicas son una de las muchas acciones que se requieren como parte de las
buenas practicas de la ingenieria de software. Cada accion requiere un esfuerzo humano diri-
gido. Como el esfuerzo disponible para el proyecto es finito, es importante que una organizacion
de software comprenda la eficacia de cada accion, definiendo un conjunto de métricas (véase
el capitulo 23) que puedan utilizarse para evaluar esa eficacia.

Aunque se han definido muchas métricas para las revisiones técnicas, un conjunto relativa-
mente pequeno da una perspectiva util. Las siguientes métricas para la revision pueden obte-
nerse conforme se efectue ésta:

* Esfuerzo de preparacion, E,: esfuerzo (en horas-hombre) requerido para revisar un
producto del trabajo antes de la reunion de revision real.

e Esfuerzo de evaluacion, E,: esfuerzo requerido (en horas-hombre) que se dedica a la
revision real.

e Esfuerzo de la repeticion, E,: esfuerzo (en horas-hombre) que se dedica a la correccion de
los errores descubiertos durante la revision.

2 Estos multiplicadores son algo diferentes de los datos presentados en la figura 14.2, que es mas actual. Sin em-
bargo, sirven para ilustrar los costos de la amplificacion del defecto.

www.FreelLibros.me

358

PARTE TRES ADMINISTRACION DE LA CALIDAD

e Tamario del producto del trabajo, TPT: medicion del tamafio del producto del trabajo que
se ha revisado (por ejemplo, numero de modelos UML o numero de paginas de
documento o de lineas de c6digo).

e Errores menores detectados, Err : numero de errores detectados que pueden clasifi-

menores®

carse como menores (requieren menos de algun esfuerzo especificado para corregirse).

e FErrores mayores detectados, EIT, : numero de errores encontrados que pueden clasifi-

mayores*
carse como mayores (requieren mas que algun esfuerzo especificado para corregirse).
Estas métricas pueden mejorarse, asociando el tipo de producto del trabajo que se revis6é con
las métricas obtenidas.

15.3.1 Andlisis de las métricas

Antes de comenzar el analisis deben hacerse algunos calculos sencillos. El esfuerzo total de
revision y el numero total de errores descubiertos se definen como sigue:

- E,+E,+E

revision

Err,, = Err + Err,

menores mayores

La densidad del error representa los errores encontrados por unidad de producto del trabajo re-
visada.

Err
i — tot
Densidad del error TPT

Por ejemplo, si se revisa un modelo de requerimientos con objeto de encontrar errores, incon-
sistencias y omisiones, es posible calcular la densidad del error en varias formas diferentes. El
modelo de requerimientos contiene 18 diagramas UML como parte de 32 paginas de materiales
descriptivos. La revision detecta 18 errores menores y 4 mayores. Por tanto, Err, , = 22. La den-
sidad del error es 1.2 errores por diagrama UML o 0.68 errores por pagina del modelo de reque-
rimientos.

Si las revisiones se llevan a cabo para varios tipos distintos de productos del trabajo (por
ejemplo, modelo de requerimientos, modelo del disefio, codigo, casos de prueba, etc.), el por-
centaje de errores no descubiertos por cada revision se confronta con el numero total de errores
detectados en todas las revisiones. Ademas, puede calcularse la densidad del error para cada
producto del trabajo.

Una vez recabados los datos para muchas revisiones efectuadas en muchos proyectos, los
valores promedio de la densidad del error permiten estimar el numero de errores por hallar en
un nuevo documento (aun no revisado). Por ejemplo, si la densidad promedio de error para un
modelo de requerimientos es de 0.6 errores por pagina, y un nuevo modelo de requerimientos
tiene una longitud de 32 paginas, una estimacion gruesa sugiere que el equipo de software en-
contrara alrededor de 19 o 20 errores durante la revision del documento. Si s6lo encuentra 6
errores, habra hecho un trabajo extremadamente bueno al desarrollar el modelo de requeri-
mientos o su enfoque de la revision no fue tan profundo.

Una vez llevada a cabo la prueba (véanse los capitulos 17 a 20), es posible obtener datos
adicionales del error, incluso el esfuerzo requerido para detectar y corregir errores no descubier-
tos durante las pruebas y la densidad del error del software. Los costos asociados con la detec-
cion y correccion de un error durante las pruebas pueden compararse con los de las revisiones.
Esto se analiza en la seccion 15.3.2.

15.3.2 Eficacia del costo de las revisiones

Es dificil medir en tiempo real la eficacia del costo de cualquier revision técnica. Una organiza-
cion de ingenieria de software puede evaluar la eficacia de las revisiones y su relacion costo-

www.FreelLibros.me

15.4

CAPITULO 15 TECNICAS DE REVISION 359

beneficio s6lo después de que éstas han terminado, de que las unidades de medida de la revision
se han recabado, de que los datos promedio han sido calculados y de que la calidad posterior
del software ha sido medida (mediante pruebas).

Siregresamos al ejemplo presentado en la seccion 15.3.1, se determino que la densidad pro-
medio del error para los modelos de requerimientos era de 0.6 errores por pagina. Se revelo que
el esfuerzo requerido para corregir un error menor en el modelo era de 4 horas-hombre. Se vio
que el esfuerzo necesario para un error mayor en los requerimientos era de 18 horas-hombre.
Al estudiar los datos recabados se observa que los errores menores ocurrieron con una frecuen-
cla cercana a 6 veces mas que los errores mayores. Por tanto, puede estimarse que el esfuerzo
promedio para detectar y corregir un error en los requerimientos durante la revision es alrededor
de 6 horas-hombre.

Los errores relacionados con los requerimientos no detectados durante las pruebas requieren
un promedio de 45 horas-hombre para encontrarse y corregirse (no hay datos disponibles
acerca de la severidad relativa del error). Con estos promedios se obtiene lo siguiente:

Esfuerzo ahorrado por error = E o= E_ 0
45 — 6 = 30 horas-hombre/error

Como durante la revision del modelo de requerimientos se encontraron 22 errores, se tendra un
ahorro cercano a 660 horas-hombre en el esfuerzo dedicado a las pruebas. Y esto se refiere solo
a los errores relacionados con los requerimientos. Al beneficio general se suman aquellos aso-
ciados con el disefio y el codigo. El esfuerzo total conduce a ciclos de entrega mas cortos y a un
mejor tiempo para llegar al mercado.

En su libro sobre la revision por pares, Karl Wiegers [Wie02] analiza datos procedentes de
anécdotas de companias grandes que han utilizado inspecciones (un tipo relativamente formal
de revision técnica) como parte de sus actividades de control de calidad del software. Hewlett
Packard reportd un rendimiento de 10 a 1 sobre la inversion gracias a las inspecciones y afirmoé
que la entrega real del producto se acelerd en un promedio de 1.8 meses-calendario. AT&T in-
dicaba que las inspecciones habian reducido el costo general de los errores de software en un
factor de 10, que la calidad habia mejorado en un orden de magnitud y que la productividad se
habia incrementado 14 por ciento. Otras empresas reportaban beneficios similares. Las revisio-
nes técnicas (en diseno y otras actividades) generan una buena relacion costo-beneficio y en
verdad ahorran tiempo.

Pero para muchos profesionales del software, esta afirmacion va contra la intuicion. “Las
revisiones toman tiempo”, dicen, “y no tenemos tiempo que perder...”. Afirman que el tiempo es
precioso en cada proyecto de software y que la actividad de revisar “todo producto del trabajo
con detalle” absorbe demasiado.

Los ejemplos presentados en esta seccion indican otra cosa. Lo mas importante es que los
datos de la industria sobre revisiones del software se han recabado durante mas de dos décadas
y se resumen cualitativamente en las graficas que aparecen en la figura 15.4

En la figura, el trabajo efectuado cuando se utilizan revisiones se refleja pronto en el desa-
rrollo de un incremento de software, pero esta inversion temprana paga dividendos debido a
que se reduce el esfuerzo necesario para hacer pruebas y correcciones. De igual importancia es
que la fecha de entrega del desarrollo con revisiones ocurre antes que la que se hace sin revi-
siones. jLas revisiones no quitan tiempo, lo ahorran!

REVISIONES: ESPECTRO DE FORMALIDAD

Las revisiones técnicas deben aplicarse con un nivel de formalidad apropiado para el producto
que se va a elaborar, para el plazo que tiene el proyecto y para el personal que realice el trabajo.

www.FreelLibros.me

360

PARTE TRES ADMINISTRACION DE LA CALIDAD

Esfuerzo
realizado, con y
sin revisiones
Fuente: adaptado de [Fog86].

Esfuerzo
A Sin
inspecciones

Con

inspecciones

I\\I Disefio ICédigoI Prueba \ /

Requerimientos Deployment

> Tiempo

Planeacién

La figura 15.5 ilustra un modelo de referencia para las revisiones técnicas [Lai02] que identifica
cuatro caracteristicas que contribuyen a la formalidad con la que se efectia una revision.

Cada una de las caracteristicas del modelo de referencia ayuda a definir el nivel de formalidad
de la revision. La formalidad de una revision se incrementa cuando: 1) se definen explicitamente
roles distintos para los revisores, 2) hay suficiente cantidad de planeacion y preparacion para la
revision, 3) se define una estructura distinta para la revision (incluso tareas y productos internos
del trabajo) y 4) el seguimiento por parte de los revisores tiene lugar para cualesquiera correc-
ciones que se efectuen.

Para entender el modelo de referencia, supongamos que €l lector decidio revisar el disefio de
la interfaz para CasaSeguraAsegurada.com. Esto puede hacerse de varias maneras diferentes,
que van de lo relativamente casual a lo riguroso en extremo. Si decide que el enfoque casual es
maés apropiado, se pide a algunos colegas (pares) que examinen €l prototipo de la interfaz en un
esfuerzo por descubrir problemas potenciales. Todos deciden que no habra preparacion previa,
pero que evaluaran el prototipo en una forma razonablemente estructurada: primero veran la
distribucion, luego la estética, después las opciones de navegacion, etc. Como disefiador que €s,
el lector decide tomar algunas notas, pero nada formales.

Pero, ;qué pasa si la interfaz es crucial para el éxito de todo el proyecto? ;Qué sucede si de
lo acertado de su ergonomia dependen vidas humanas? Debid concluirse que era necesario un
enfoque mas riguroso. Se forma entonces el equipo de revision. Cada integrante de éste tendra

Modelo de
referencia para
hacer revisiones
técnicas

Planeacién
y preparacion

Roles
de los
individuos

Estructura
de la reunién

Correccién
y verificacién

www.FreelLibros.me

15.5

CAPITULO 15 TECNICAS DE REVISION 361

un rol especifico: dirigir el equipo, registrar las reuniones, presentar el material, etc. Cada revisor
tendra acceso al producto del trabajo (en este caso, el prototipo de la interfaz) antes de que la
revision tenga lugar y dedicara tiempo a la busqueda de errores, inconsistencias y omisiones.
Se realizara un conjunto de tareas especificas con base en una agenda que se desarrollara antes
de que ocurra la revision. Los resultados de ésta seran registrados de manera formal y el equipo
decidira sobre el estado del producto del trabajo con base en el resultado de la revision. Los
miembros del equipo también verificaran que las correcciones se hagan de manera adecuada.

En este libro se consideran dos grandes categorias de revisiones técnicas: revisiones infor-
males y revisiones técnicas mas formales. Dentro de cada una de ellas se escogen varios enfo-
ques diferentes. Estos se presentan en las secciones que siguen.

REVISIONES INFORMALES

Las revisiones informales incluyen una simple verificacion de escritorio de un trabajo de inge-
nieria de software, hecha con algun colega, o una reunion casual (con méas de dos personas) con
objeto de revisar un producto o aspectos orientados a la revision de programacion por pares
(véase el capitulo 3).

Una verificacion de escritorio simple o una reunion casual realizada con un colega constituye
una revision. Sin embargo, como no hay una planeacion o preparacion por adelantado, ni
agenda o estructura de la reunion, y no se da seguimiento a los errores descubiertos, la eficacia
de tales revisiones es mucho menor que la de los enfoques mas formales. Pero una verificacion
de escritorio sencilla descubre errores que de otro modo se propagarian en el proceso del soft-
ware.

Una forma de mejorar la eficacia de una verificacion de escritorio es desarrollar un conjunto
de listas de revision para cada producto grande del trabajo generado por el equipo de software.
Las preguntas que se plantean en la lista son generales, pero serviran para guiar a los revisores
en la verificacion del producto. Por ejemplo, veamos una verificacion de escritorio del prototipo
de la interfaz de CasaSeguraAsegurada.com. En vez de solo jugar con el prototipo en la esta-
cion de trabajo del disefiador, éste y un colega lo examinan con el empleo de una lista para in-
terfaces:

e ;lLa distribucion esta disefiada con el empleo de convenciones estandar? ;De izquierda a
derecha? ;De arriba abajo?

e .la presentacion necesita ser desplazada verticalmente?
e ;Se usan con eficacia el color y la ubicacion, la tipografia y el tamafio?

e ;Todas las opciones o funciones de navegacion estan representadas en el mismo nivel
de abstraccion?

e ;Estan etiquetadas con claridad todas las elecciones de navegacion?

y asi sucesivamente. Cualesquiera errores o aspectos sefialados por los revisores son registra-
dos por el disefiador para resolverlos tiempo después. Las verificaciones de escritorio se progra-
man en forma ad hoc o son obligatorias como parte de las buenas practicas de la ingenieria de
software. En general, la cantidad de material por revisar es relativamente pequena y el tiempo
total dedicado a una revision de escritorio es de poco mas de una hora o dos.

En el capitulo 3 se describid la programacioén por pares en la forma siguiente: “La XP reco-
mienda que dos personas trabajen juntas en una estacion de trabajo con objeto de crear €l co-
digo de una narracion. Esto proporciona un mecanismo para resolver problemas y asegurar la
calidad en tiempo real (dos cabezas piensan mas que una).”

La programacion por pares se caracteriza por una verificacion de escritorio continua. En vez
de programar una revision en algin momento dado, la programacion por pares invita a hacer

www.FreelLibros.me

362

PARTE TRES ADMINISTRACION DE LA CALIDAD

una revision continua a medida que se crea el producto (disefio o c6digo). El beneficio es el
inmediato descubrimiento de los errores y, en consecuencia, la mejora de la calidad del pro-
ducto.

En su estudio sobre la eficacia de la programacion por pares, Williams y Kessler [Wil00] afir-
man lo siguiente:

Las evidencias anecdoticas e iniciales sefalan que la programacion por pares es una técnica poderosa
para generar productivamente trabajos de software de alta calidad. Los elementos de la pareja laboran
y comparten sus ideas para resolver las complejidades del desarrollo del software. Realizan de manera
continua inspecciones de lo que hace cada quien, lo que conduce a una forma de eliminacion de de-
fectos mas rapida y eficiente. Ademas, se mantienen centrados intensamente en la tarea uno del
otro.

Algunos ingenieros de software dicen que la redundancia inherente construida en la programa-
cion por parejas es un desperdicio de recursos. Después de todo, spor qué asignar dos personas
a un trabajo que podria ejecutar solo una? La respuesta a esta pregunta se encuentra en la sec-
cion 15.3.2. Sila calidad del producto del trabajo generado como consecuencia de la programa-
cion en parejas es mucho mejor que el trabajo de un individuo, los ahorros relacionados con la
calidad justifican de sobra la “redundancia” implicita en la programaciéon por parejas.

7

lity/index.php
Hay otras listas Gtiles de

Qr las siguientes entidades:

Listas de verificacién para revisiéon

Aun cuando las revisiones estén bien organizadas y se lle- Process Impact (www.processimpact.com/pr_goodies.
ven a cabo de manera apropiada, no es mala idea dara shtml)

los revisores una “criba”. Es decir, es Gtil tener una lista de verifica- Software Dioxide (www.softwaredioxide.com/Channels/
cién que dé a cada revisor las preguntas que debe plantear acerca ConView.asp?id=6309)
del producto especifico del trabajo que se revisa. Macadamian (www.macadamian.com)
Una de las listas mas completas es la desarrollada por la NASA The Open Group Architecture Review Checklist (www.open-
en el Centro Goddard de Vuelos Espaciales, disponible en la direc- group.org/architecture/togaf7-doc/arch/p4/comp/

cién http://sw-assurance.gsfc.nasa.gov/disciplines/qua- clists/syseng.htm)

INFORMACION

DFAS (puede descargarse, www.dfas.mil/technology/
revision técnica que han sido propuestas pal/ssps/docstds/spm036.doc)

J

15.6

oy

“No hay nada mds urgente para
alguien que corregir el trahajo
de los demds.”

Mark Twain

REVISIONES TECNICAS FORMALES

Una revision técnica formal (RTF) es una actividad del control de calidad del software realizada
por ingenieros de software (y otras personas). Los objetivos de una RTF son: 1) descubrir los
errores en funcionamiento, l6gica o implementacion de cualquier representacion del software;
2) verificar que el software que se revisa cumple sus requerimientos; 3) garantizar que el soft-
ware esta representado de acuerdo con estandares predefinidos; 4) obtener software desarro-
llado de manera uniforme y 5) hacer proyectos mas manejables. Ademas, la RTF sirve como
método de capacitacion, pues permite que los ingenieros principiantes observen distintos enfo-
ques de analisis, diseno e implementacion del software. La RTF también funciona para estimu-
lar el respaldo y la continuidad debido a que varias personas se familiarizan con software que
de otra manera no hubieran visto.

La RTF en realidad es una clase que incluye walkthroughs e inspecciones. Cada RTF se reali-
za como una reunion y tendra éxito solo si se planea, controla y ejecuta en forma apropiada. En
las secciones que siguen se presentan lineamientos similares a aquellos usados para un walk-
through, como representativos de la revision técnica formal. Si el lector tiene interés en las ins-

www.FreelLibros.me

El documento Formal Inspection
Guidebook, de la NASA, puede
descargarse del sitio satc.gsfe.nasa.
gov/Documents/fi/gdb/fi.pdf

(5
\%

CLAVE

Una RTF se cenfra en una parte
relativamente pequefia de un
producto del frabajo.

ec'ousuog

En ciertas situaciones, es buena idea
que alguien distinto del productor
haga el wakthroug del producto que
se revisa. Fsto fleva o una
interpretacidn literal del producto y a

mejorar ef reconocimiento de errores.

CAPITULO 15 TECNICAS DE REVISION 363

pecciones de software y en obtener mas informacion sobre walkthroughs, consulte [Rad02],
[Wie02] o [Fre90].

15.6.1 Lareunion de revisidon

Sin importar cual formato de RTF se elija, cualquiera de ellos debe cumplir las restricciones si-
guientes:

e En la revision deben involucrarse de tres a cinco personas (normalmente).

e Debe haber preparacion previa, pero no debe exigir mas de dos horas de trabajo de cada
persona.

e La duraciéon de la reunion de revision debe ser de al menos dos horas.

Dadas estas restricciones, debe resultar obvio que una RTF se centra en una parte especifica (y
pequena) del software general. Por ejemplo, en vez de tratar de revisar todo el diseno, se hacen
walkthrougs para cada componente o grupo pequeno de componentes. Al reducir el alcance, la
RTF tiene mayor probabilidad de detectar errores.

La atencién de la RTF se dirige a un producto (por ejemplo, una parte del modelo de requeri-
mientos, el disefio detallado de un componente o su codigo fuente, etc.). El individuo que haya
desarrollado el producto —el productor— informa al lider del proyecto que ha terminado y que
se requiere hacer una revision. El lider del proyecto contacta al lider de la revision, quien evalta
el producto en cuanto a su conclusion, genera copias de los materiales del producto y las distri-
buye a dos o tres revisores para la preparacion previa. Se espera que cada revisor dedique de una
a dos horas a la inspeccion del producto, tome notas y se familiarice con el trabajo. Al mismo
tiempo, el lider del proyecto también revisa el producto y establece una agenda para la reunion
de revision, que por lo general se programa para el dia siguiente.

A la reunion de revision acuden el lider de ésta, todos los revisores y el productor. Uno de los
revisores adopta el rol de secretario, es decir, quien registra (por escrito) todos los acontecimien-
tos importantes que surjan durante la revision. La RTF comienza con el analisis de la agenda y
una introduccion breve por parte del productor. Después, éste procede a “recorrer” el producto
del trabajo, explicando el material, mientras los revisores hacen sus comentarios con base en la
preparacion que hicieron. Cuando se descubren problemas o errores validos, el secretario toma
nota de ellos.

Al terminar la revision, todos los asistentes deben decidir si: 1) aceptan el producto sin mo-
dificaciones, 2) lo rechazan debido a errores graves (una vez corregidos, se realiza otra revision)
0 3) aceptan el producto de manera provisional (se encontraron errores menores que deben
corregirse, pero no se necesita otra revision). Una vez tomada la decision, todos los asistentes
a la RTF firman el acta que indica su participacion y su acuerdo con los descubrimientos del
equipo de revision.

15.6.2 Reporte y registro de la revision

Durante la RTF, un revisor (el secretario) registra activamente todos los asuntos que se planteen.
Estos se resumen al final de la reunion y se produce la lista de pendientes de la revision. Ademas
se elabora un reporte técnico formal de la revision. Este responde tres preguntas:

1. :Qué fue lo que se reviso?
2. ;Quién lo reviso?
3. ;Cuales fueron los descubrimientos y las conclusiones?

El resumen del reporte de la revision es una sola pagina (quiza con anexos) que se vuelve par-
te del registro histérico del proyecto y se entrega al lider del proyecto y a otras partes intere-
sadas.

www.FreelLibros.me

364

ec'ousuo’

No serfale los errores en forma
grosera. Una manera omable de
hacerlo es plantear preguntas que
fleven ol productor a descubrir ef
error.

oy

“Una reunion es muy frecuente-
mente un evento en el cual los
minutos son tomados y lus horas
son gastadas.”

Avutor desconocido

2 cia

“Es una de las mds hermosas
compensaciones de la vida, que
ningin hombre pueda sincera-
mente ayudar a ofro sin
ayudarse a si mismo.”

Ralph Waldo Emerson

PARTE TRES ADMINISTRACION DE LA CALIDAD

La lista de pendientes de la revision tiene dos propoésitos: 1) identificar areas de problemas
en el producto y 2) servir como lista de verificacion de acciones que guie al productor cuando
se hagan las correcciones. La lista de pendientes normalmente se anexa al reporte técnico.

Debe establecerse un procedimiento de seguimiento para garantizar que los pendientes de
la lista se corrijan de manera apropiada. A menos que esto se haga, es posible que los pendien-
tes anotados “se pierdan en el camino”. Un enfoque consiste en asignar la responsabilidad del
seguimiento al lider del proyecto.

15.6.3 Lineamientos para la revision

Los lineamientos para efectuar revisiones técnicas formales deben establecerse por adelantado,
distribuirse a todos los revisores, llegar al consenso y, después, seguirse. Una revision sin con-
trol con frecuencia es peor que si no se hiciera ninguna. Los siguientes representan un conjunto
minimo de lineamientos para hacer revisiones técnicas formales:

1. Revise el producto, no al productor. Una RTF involucra personas y sus egos. Si se lleva a
cabo en forma adecuada, la RTF debe dejar en todos los participantes una sensacion de
logro. Si se efectua de modo inapropiado, adopta un aire inquisitorial. Los errores deben
sefalarse en forma amable; €l tono de la reunidn debe ser relajado y constructivo; el tra-
bajo no debe apenar o menospreciar a nadie. El lider de la revision debe conducir la re-
union en tono y actitud apropiados y debe detenerla de inmediato si se sale de control.

2. Establezca una agenda y sigala. Una de las fallas clave de las reuniones de todo tipo es la
dispersion. Una RTF debe mantenerse encarrilada y dentro del programa. El lider de la
revision tiene la responsabilidad de que asi sea y no debe sentir temor de llamar al or-
den a las personas cuando se dispersen.

3. Limite el debate y las contestaciones. Cuando el revisor plantee un asunto, quiza no haya
acuerdo universal acerca de su efecto. En vez de perder tiempo en debatir la cuestion,
ésta debe registrarse para discutirla después.

4. Enuncie dreas de problemas, pero no intente resolver cada uno. Una revision no es una
sesion para resolver problemas. Es frecuente que la solucion de un problema la obtenga
el productor, solo o con ayuda de otra persona. La solucion de los problemas debe pos-
ponerse para después de la reunion de revision.

5. Tome notas por escrito. A veces es buena idea que el secretario tome notas en un piza-
rrén a fin de que la redaccion y prioridades sean evaluadas por los demaés revisores a
medida que la informacion se registra. De manera alternativa, pueden tomarse notas di-
rectamente en una computadora.

6. Limite el numero de participantes ¢ insista en la preparacion previa. Dos cabezas piensan
mas que una, pero 14 no son necesariamente mejor que 4. Mantenga limitado el nu-
mero de personas involucradas. Sin embargo, todos los miembros del equipo de revi-
sion deben prepararse. El lider de la revision tiene que solicitar comentarios por escrito
(lo que proporciona un indicador de que el revisor ha inspeccionado el material).

7. Desarrolle una lista de verificacion para cada producto que sea probable que se revise. Una
lista de verificacion ayuda al lider del proyecto a estructurar la RTF y a cada revisor a
centrarse en los aspectos importantes. Deben desarrollarse listas para los productos del
analisis, el diseno, el codigo e incluso las pruebas.

8. Asigne recursosy programe tiempo para las RTF. Para que las revisiones sean eficaces,
deben programarse como tareas del proceso de software. Ademas, debe programarse
tiempo para hacer las inevitables modificaciones que ocurriran como resultado de la
RTF.

www.FreelLibros.me

cc'ousuoﬁ

Las revisiones foman tiempo, y éste
estard bien invertido. Sin embargo,
si hay poco tiempo y no hay ofra
opcidn, no omita fas revisiones. £n
vez de ello, aplique lo revisidn
orientadas of muestreo.

CAPITULO 15 TECNICAS DE REVISION 365

9. D¢ una capacitacion significativa a todos los revisores. Para que una revision sea eficaz,
todos los revisores deben recibir cierta capacitacion formal. Esta debe hacer énfasis
tanto en aspectos relacionados con el proceso como en €l lado de la sicologia humana
de la revision. Freedman y Weinberg [Fre90] estiman en un mes la curva de aprendizaje
para que 20 personas participen de modo eficaz en una revision.

10. Revise las primeras revisiones. Volver a revisar puede ser benéfico para descubrir proble-
mas con el proceso de revision en si mismo. El primer producto por revisar deben ser
los lineamientos de la revision.

Debido a que son muchas las variables (numero de participantes, tipo de productos del tra-
bajo, tiempo y duracion, enfoque especifico de la revision, etc.) que influyen en que una revision
sea exitosa, la organizacion de software debe experimentar para determinar el enfoque que
mejor funcione en el contexto local.

15.6.4 Revisiones orientadas al muestreo

Idealmente, todo producto del trabajo de la ingenieria de software debe pasar por una revision
técnica. En el mundo real de los proyectos de software, los recursos son limitados y el tiempo,
escaso. En consecuencia, es frecuente que las revisiones se omitan, aun cuando se reconozca
su valor como un mecanismo de control de calidad.

Thelin et al. [The01] sugieren un proceso de revision orientado al muestreo en el que se to-
man muestras de todos los productos del trabajo de ingenieria de software a fin de inspeccio-
narlos para determinar cuales son mas susceptibles de tener errores. Después se enfocan todos
los recursos de la RTF s6lo en aquellos productos en los que sea muy probable encontrar errores
(con base en los datos obtenidos durante el muestreo).

Para que sea eficaz, el proceso de revision orientada al muestreo debe tratar de identificar
aquellos productos del trabajo que sean objetivos principales para hacer la RTFE. Para lograrlo se
sugiere seguir las etapas siguientes [The01]:

1. Inspeccionar una fraccion a, de cada producto del trabajo i. Registrar el nimero de fallas
J; encontradas dentro de a,.

2. Desarrollar una estimacion gruesa del numero de fallas en el producto del trabajo i, con
la multiplicaciéon de f; por 1/a,.

3. Ordenar los productos del trabajo en orden descendente de acuerdo con la estimacion
gruesa del numero de fallas que hay en cada uno.

4. Dedicar los recursos disponibles para la revision a aquellos productos que tengan €l nu-
mero estimado mas grande de fallas.

La fraccion del producto del trabajo de la que se tomen muestras debe ser representativa del
producto del trabajo total y suficientemente grande a fin de que tenga significado para todos los
revisores que no hagan muestreo. A medida que aumenta a, se incrementa la probabilidad de
que la muestra sea una representacion valida del producto del trabajo. Sin embargo, los recursos
requeridos para hacer el muestreo también aumentan. El equipo de ingenieria de software debe
establecer el mejor valor de g, para los tipos de productos generados.?

3 Thelin et al., realizaron una simulacion detallada que puede ayudar a hacer esto. Consulte [The0Ol1] para mayores
detalles.

www.FreelLibros.me

366 PARTE TRES ADMINISTRACION DE LA CALIDAD

CAsSASEGURA

Aspectos de la calidad

La escena: La oficina de Doug Miller, al comen- Jamie: Que seleccionemos aquellos elementos del modelo de
zar el proyecto de software CasaSegura. requerimientos y disefio que tengan mds importancia critica para

Participantes: Doug Miller (gerente del equipo de ingenieria de CeEESegly G| 9 (VOIS

software de CasaSegura) y ofros miembros del equipo. Vinod: Pero, 3qué pasa si hay algo mal en una parte que no haya-

mos revisado?

La conversacion: Shakira: Lei algo sobre una técnica de muestreo [seccién 15.6.4]

Doug: S¢ que no hemos dedicado tiempo a desarrollar un plan de Aue podria ayudarnos a determinar candidatos a la revisién (Shaki-
calidad para este proyecto, pero ya estamos en él y tenemos que ra explica este enfoque.)
tomar en cuenta la calidad... 3Correcto? Jamie: Quizd... pero no estoy seguro de que fengamos tiempo

. o incluso para fomar muestras de cada elemento de los modelos.
Jamie: Seguro. Decidimos que conforme desarrollemos el modelo

de requerimientos [capitulos 6 y 7], Ed haré un procedimiento para
probar cada uno de ellos. Doug: Tomemos algo de la programacién extrema [véase el capitu-

lo 3]. Desarrollaremos los elementos de cada modelo en parejas

Vinod: Doug, 3qué quieres que hagamos?

Doug: Eso es realmente bueno, pero no vamos a esperar a las

b lvar lo calidad dod? —dos personas— y haremos una revisién informal de cada una con-
pruebas para evaluar la calidad, sverdad?

forme avancemos. Enfonces nos abocaremos a los elementos

Vinod: No, por supuesto que no... Hemos programado revisiones criticos” para hacer una revision més formal en equipo, pero hay
en el plan del proyecto para este incremento de software. Comenza- ~ 9ue mantener esas revisiones al minimo. De ese modo, todo serd
s & @il db aaiiled] @en s tevidtenes, observado por més de un par de ojos y también cumpliremos nues-

. tras fechas de entrega.
Jamie: Me preocupa un poco que no tengamos tiempo suficiente

. . N Jamie: Eso significa que vamos a tener que revisar la programa-
para hacer todas las revisiones. En realidad, sé que no lo tendremos.

cién de actividades.
Doug: Mmm... 3Qué proponen? Doug: Asi es. La calidad altera la programacién de este proyecto.

15.7 RESUMEN

El objetivo de toda revision técnica es detectar errores y descubrir aspectos que tendrian un
efecto negativo en el software que se va a desarrollar. Entre mas pronto se descubra y corrija
un error, menos probable es que se propague a otros productos del trabajo de la ingenieria de
software y que se amplifique, lo que provocaria un mayor esfuerzo para corregirlo.

A fin de determinar si las actividades de control de calidad funcionan, deben determinarse
varias métricas. Estas se centran en el esfuerzo requerido para realizar la revision y los tipos y
severidad de errores descubiertos durante la revision. Una vez recabadas las métricas, se usan
para evaluar la eficacia de las revisiones que se efectiien. Los datos de la industria indican que
las revisiones tienen un rendimiento elevado sobre la inversion.

Un modelo de referencia para la formalidad de la revision identifica roles de las personas,
planeacion y preparacion, estructura de la reunion, enfoque de correccion y verificacion como
las caracteristicas que indican el grado de formalidad con el que se realiza una revision. Las
revisiones informales son de naturaleza casual, pero pueden usarse con eficacia para detectar
errores. Las revisiones formales son mas estructuradas y tienen una probabilidad mayor de dar
como resultado un software de alta calidad.

Las revisiones informales se caracterizan por tener una planeacion y preparacion minimas y
poco registro de su desarrollo. Las verificaciones de escritorio y la programacion por parejas
forman parte de esta categoria de revision.

Una revision técnica formal es una reunion estilizada que ha demostrado ser extremada-
mente eficaz para detectar errores. Los walkthrougs y las inspecciones establecen roles defini-
dos para cada revisor, estimulan la planeacion y la preparacion previa, requieren la aplicacion
de lineamientos de revision definidos y ordenan llevar registros y hacer reportes. Las revisiones

www.FreelLibros.me

CAPITULO 15 TECNICAS DE REVISION 367

por muestreo se utilizan cuando no es posible efectuar revisiones técnicas formales para todos
los productos del trabajo.

PROBLEMAS Y PUNTOS POR EVALUAR
15.1. Explique la diferencia entre un error y un defecto.
15.2. ;Por qué no puede esperarse a las pruebas para encontrar y corregir todos los errores del software?

15.3. Suponga que en el modelo de requerimientos se han cometido 10 errores y que cada uno se amplifi-
cara en un factor de 2:1 en el diseno, y que se cometeran otros 20 errores de disefo adicionales que luego
se amplificaran en un factor de 1.5:1 en el co6digo, donde se cometeran otros 30 errores adicionales. Suponga
que todas las pruebas unitarias encontraran 30 por ciento de todos los errores, que la integracion descubrira
30 por ciento de los restantes y que las pruebas de validacion hallaran 50 por ciento de los que queden. No
se efectuaran revisiones. ;Cuantos errores saldran al publico?

15.4. Vuelva a considerar la situacion descrita en el problema 15.3, pero ahora suponga que se realizan
revisiones en los requerimientos, disefio y codigo, con 60 por ciento de eficacia en el descubrimiento de todos
los errores en esa etapa. ;Cuantos errores saldran al publico?

15.5. Estudie de nuevo la situaciéon descrita en los problemas 15.3 y 15.4. Si cada uno de los errores que
salen al publico tiene un costo de $4 800 por ser detectado y corregido, y hacer lo mismo para cada error
descubierto en la revision cuesta $240, ;icuanto dinero se ahorra por efectuar revisiones?

15.6. En sus propias palabras, describa el significado de la figura 15.4.

15.7. ;Cual de las caracteristicas del modelo de referencia piensa usted que tiene el mayor efecto en la
formalidad de la revision? Explique por qué.

15.8. :Se le ocurren algunos casos en los que una verificacion de escritorio genere problemas en lugar de
beneficios?

15.9. Unarevision técnica formal es eficaz sélo si cada quien se prepara por adelantado. ;Cémo se reconoce
a un participante que no se haya preparado? ;Qué haria si usted fuera el lider de la revision?

15.10. Al considerar todos los lineamientos para la revision presentados en la seccion 15.6.3, scual piensa
que sea el mas importante y por qué?

LECTURAS Y FUENTES DE INFORMACION ADICIONALES

Se han escrito relativamente pocos libros sobre las revisiones de software. Algunas de las ediciones recien-
tes que dan una guia util incluyen los textos de Wong (Modern Software Review, IRM Press, 2006), Radice (High
Quality, Low Cost Software Inspections, Paradoxicon Publishers, 2002), Wiegers (Pecr Reviews in Software: A
Practical Guide, Addison-Wesley, 2001) y Gilb y Graham (Software Inspection, Addison-Wesley, 1993). El de
Freedman y Weinberg (Handbook of Walkthroughs, Inspections and Technical Reviews, Dorset House, 1990)
sigue siendo un texto clasico y todavia proporciona informacion util acerca de este tema tan importante.

En internet existe una amplia variedad de fuentes de informacion acerca de la calidad del software. En el
sitio web del libro, se encuentra una lista actualizada de referencias existentes en la red mundial y que son
relevantes para las revisiones de software, en la direccion www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

www.FreelLibros.me

CAPITULO

DEL SOFTWARE

ASEGURAMIENTO DE LA CALIDAD

CONCEPTOS CLAVE
confiabilidad del software . . 376

| enfoque de la ingenieria de software descrito en este libro se dirige a una sola meta:
producir software a tiempo y de alta calidad. Pero muchos lectores se preguntaran: “;Qué

elementos del ACS. 370 es calidad del software?”.
estadistico 374 Philip Crosby [Cro79], en su libro clasico sobre calidad, da una respuesta ironica a esta pre-
plan.......oooointn 379)
tareas 371 gunta:
enfoques formales. 373 El problema de la administracion de la calidad no es lo que la gente ignora de ella. El problema es lo
estdndar 1S0 9001-2000 . . 378 que piensan que saben...
metas................. 3N En ese sentido, la calidad tiene mucho en comun con el sexo. Todo mundo lo busca (en ciertas
seguridad del software 378 condiciones, por supuesto). Todos creen que lo entienden (aunque no querrian explicarlo). Todos
Seis Sigma 375 piensan que su ejecucion solo consiste en seguir las inclinaciones naturales (después de todo, lo ha-

cemos de algun modo). Y, por supuesto, la mayoria de la gente siente que los problemas en esta area
los causan las demas personas (si s6lo se dieran el tiempo de hacer las cosas bien).

En realidad, la calidad es un concepto dificil (se abordo6 con cierto detalle en el capitulo 14).!
Algunos desarrolladores de software todavia creen que la calidad del software es algo por 1o

que hay que empezar a preocuparse una vez generado el codigo. Nada podria estar mas lejos

de la verdad... El aseguramiento de la calidad del software (con frecuencia llamado administracion

Una

¢Qué es? No basta hablar por hablar para ¢Cuédles son las etapas? Antes de iniciar las actividades

MIRADA

RAPIDA

decir que la calidad del software es importante.
Tiene que 1) definirse explicitamente lo que
quiere decir “calidad del software”, 2) crearse
un conjunto de actividades que ayuden a garantizar que
todo producto de la ingenieria de software tenga alta cali-
dad, 3) desarrollarse el control de calidad y las actividades
para asegurar ésta en todo proyecto de software, 4) usar-
se métricas para desarrollar estrategias a fin de mejorar
el proceso del software y, en consecuencia, la calidad del
producto final.

&¢Quién lo hace? Todos los involucrados en el proceso de

ingenieria de software son los responsables de la calidad.

&Por qué es importante? Las cosas pueden hacerse bien

368

o pueden volverse a hacer. Si un equipo de software pone
el énfasis en la calidad en todas las actividades de la inge-
nieria de software, se reduce la cantidad de repeticiones
que debe hacer. Eso da como resultado costos més bajos
y, lo que es mds importante, un mejor tiempo para llegar
al mercado.

de aseguramiento de la calidad del software (ACS), es
importante definir la calidad del software en varios niveles
diferentes de abstraccién. Una vez que se entiende lo que
es la calidad, el equipo de software debe identificar un
conjunto de actividades de ACS que filtren los errores de
los productos del trabajo antes de que se aprueben.

¢Cudl es el producto final? Se crea un Plan de Asegu-

ramiento de la Calidad del Software para definir una
estrategia de ACS del equipo. Durante la modelacién y
codificacién, el producto principal del ACS es la salida de
las revisiones técnicas (véase el capitulo 15). Durante las
pruebas (capitulos 17 a 20), se generan los planes y pro-
cedimientos de prueba, asi como otros productos del tra-
bajo asociados con el proceso de mejora.

¢Como me aseguro de que lo hice bien? Hay que

encontrar los errores antes de que se vuelvan defectos... Es
decir, debe trabajarse para mejorar la eficiencia en la
eliminacién de defectos (capitulo 23), a fin de reducir
la cantidad de repeticiones que tenga que hacer el equipo

del software.

1 Sino haleido el capitulo 14, debe leerlo ahora.

www.FreelLibros.me

16.1

Q Cita:

“Cometes demasiados errores
equivocados.”

Yogi Berra

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 369

de la calidad) es una actividad sombrilla (véase el capitulo 2) que se aplica en todo el proceso del
software.

El aseguramiento de la calidad del software (ACS) incluye lo siguiente: 1) un proceso de ACS,
2) tareas especificas de aseguramiento y control de la calidad (incluidas revisiones técnicas y
una estrategia de pruebas relacionadas entre si), 3) practicas eficaces de ingenieria de software
(métodos y herramientas), 4) control de todos los productos del trabajo de software y de los
cambios que sufren (véase el capitulo 22), 5) un procedimiento para garantizar el cumplimiento
de los estandares del desarrollo de software (cuando sea aplicable) y 6) mecanismos de medi-
cion y reporte.

Este capitulo se centra en aspectos de la administracion y en las actividades especificas del
proceso que permiten a una organizacion de software garantizar que hace “las cosas correctas
en el momento correcto y de la forma correcta”.

ANTECEDENTES

El control y aseguramiento de la calidad son actividades esenciales para cualquier negocio que
genere productos que utilicen otras personas. Antes del siglo xx, el control de calidad era res-
ponsabilidad tinica del artesano que elaboraba el producto. Cuando paso el tiempo'y las técnicas
de la produccion en masa se hicieron comunes, el control de calidad se convirtid en una activi-
dad ejecutada por personas diferentes de aquellas que elaboraban el producto.

La primera funcién formal de aseguramiento y control de la calidad se introdujo en los labo-
ratorios Bell en 1916 y se difundi6 con rapidez al resto del mundo de la manufactura. Durante
la década de 1940, sugirieron enfoques mas formales del control de calidad. Estos se basaban
en la medicioén y en el proceso de la mejora continua [Dem86] como elementos clave de la ad-
ministracion de la calidad.

Actualmente, toda compafia tiene mecanismos para asegurar la calidad en sus productos.
En realidad, en las ultimas décadas, las afirmaciones explicitas del compromiso de una compa-
nia con la calidad se han vuelto un mantra de la mercadotecnia.

La historia del aseguramiento de la calidad en el desarrollo del software corre de manera
paralela con la historia de la calidad en la manufactura del hardware. En los primeros dias de la
computacion (décadas de 1950 y 1960), la calidad era responsabilidad tnica del programador.
Los estandares para asegurar la calidad del software se introdujeron en los contratos para de-
sarrollar software militar en la década de 1970 y se extendieron con rapidez al desarrollo de
software en el mundo comercial [IEE93]. Si se amplia la definicién presentada al principio, el
aseguramiento de la calidad del software es un “patrén planeado y sistematico de acciones”
[Sch98c] que se requieren para garantizar alta calidad en el software. El alcance de la respon-
sabilidad del aseguramiento de la calidad se caracteriza mejor si se parafrasea un comercial de
un automovil popular: “La calidad es el empleo niumero 1.” La implicacion para el software es
que muchas entidades diferentes tienen responsabilidad en el aseguramiento de la calidad del
software: ingenieros de software, gerentes de proyecto, clientes, vendedores y los individuos
que trabajan en el grupo de ACS.

El grupo de ACS funciona como representante del cliente en el interior de la empresa. Es
decir, la gente que realiza el ACS debe ver al software desde el punto de vista del cliente.
¢El software cumple adecuadamente los factores de calidad mencionados en el capitulo 14? ¢4El
desarrollo del software se condujo de acuerdo con estandares preestablecidos? ¢Las discipli-
nas técnicas han cumplido con sus roles como parte de la actividad de ACS? El grupo de ACS
trata de responder éstas y otras preguntas para garantizar que se mantenga la calidad del soft-
ware.

www.FreelLibros.me

370

16.2

En lo direccion www.swqual.
com/newsletter /vol2/no1/
vol2no1.html, se encuentra un
andlisis profundo del ACS, que incluye
una amplia variedad de definiciones.

-

“La excelencia es lo capacidad
ilimitada de mejorar la calidod
de lo que se tenga para ofre-

n

er.

Rick Petin

PARTE TRES ADMINISTRACION DE LA CALIDAD

ELEMENTOS DE ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE

El aseguramiento de la calidad del software incluye un rango amplio de preocupaciones y acti-
vidades que se centran en la administracion de la calidad del software. Estas se resumen como
sigue [Hor03]:

Estandares. El IEEE, ISO y otras organizaciones que establecen estandares han produ-
cido una amplia variedad de ellos para ingenieria de software y documentos relacionados.
Los estandares los adopta de manera voluntaria una organizacion de software o los im-
pone el cliente u otros participantes. El trabajo del ACS es asegurar que los estandares que
se hayan adoptado se sigan, y que todos los productos del trabajo se apeguen a ellos.

Revisiones y auditorias. Las revisiones técnicas son una actividad del control de cali-
dad que realizan ingenieros de software para otros ingenieros de software (véase el capi-
tulo 15). Su objetivo es detectar errores. Las auditorias son un tipo de revision efectuada
por personal de ACS con objeto de garantizar que se sigan los lineamientos de calidad en el
trabajo de la ingenieria de software. Por ejemplo, una auditoria del proceso de revision se
efecttia para asegurar que las revisiones se lleven a cabo de manera que tengan la maxima
probabilidad de descubrir errores.

Pruebas. Las pruebas del software (capitulos 17 a 20) son una funcion del control de cali-
dad que tiene un objetivo principal: detectar errores. El trabajo del ACS es garantizar que
las pruebas se planeen en forma apropiada y que se realicen con eficiencia, de modo que la
probabilidad de que logren su objetivo principal sea maxima.

Coleccion y analisis de los errores. La Unica manera de mejorar es medir como se
esta haciendo algo. El ACS reune y analiza errores y datos acerca de los defectos para en-
tender mejor como se cometen los errores y qué actividades de la ingenieria de software
son mas apropiadas para eliminarlos.

Administraciéon del cambio. El cambio es uno de los aspectos que mas irrumpe en
cualquier proyecto de software. Si no se administra en forma adecuada, lleva a la confusion
y ésta casi siempre genera mala calidad. El ACS asegura que se hayan instituido practicas
adecuadas de administracion del cambio (véase el capitulo 22).

Educaciéon. Toda organizacion de software quiere mejorar sus practicas de ingenieria de
software. Un contribuyente clave de la mejora es la educacion de los ingenieros de soft-
ware, de sus gerentes y de otros participantes. La organizacion de ACS lleva el liderazgo en
la mejora del proceso de software (capitulo 30) y es clave para proponer y patrocinar pro-
gramas educativos.

Administracién de los proveedores. Son tres las categorias de software que se adquie-
ren a proveedores externos: paquetes contenidos en una caja (por ejemplo, Office, de Micro-
soft); un shell personalizado [Hor03], que da una estructura basica, tipo esqueleto, que se
adapta de manera Unica a las necesidades del comprador; y software contratado, que se di-
sefa y construye especialmente a partir de especificaciones provistas por la organizacion
cliente. El trabajo de la organizacion de ACS es garantizar que se obtenga software de alta
calidad a partir de las sugerencias de practicas especificas de calidad que el proveedor debe
seguir (cuando sea posible) y de la incorporacion de clausulas de calidad como parte de
cualquier contrato con un proveedor externo.

Administracion de la seguridad. Con el aumento de los delitos cibernéticos y de las
nuevas regulaciones gubernamentales respecto de la privacidad, toda organizacion de soft-
ware debe instituir politicas para proteger los datos en todos los niveles, establecer corta-
fuegos de proteccion para las webapps y asegurar que el software no va a ser vulnerado in-

www.FreelLibros.me

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 371

ternamente. El ACS garantiza que para lograr la seguridad del software, se utilicen el
proceso y la tecnologia apropiados.

Seguridad. Debido a que el software casi siempre es un componente crucial de los siste-
mas humanos (como aplicaciones automotrices o aeronauticas), la consecuencia de defec-
tos ocultos puede ser catastrofica. El ACS es responsable de evaluar el efecto de las fallas
del software y de dar los pasos que se requieren para disminuir €l riesgo.

Administracion de riesgos. Aunque el analisis y la mitigacion de riesgos (véase el capi-
tulo 28) es asunto de los ingenieros de software, la organizacion del ACS garantiza que las
actividades de administracion de riesgos se efectien en forma apropiada y que se establez-
can planes de contingencia relacionados con los riesgos.

Ademas de cada una de estas preocupaciones y actividades, el ACS tiene como preocupacion
dominante asegurar que las actividades de apoyo del software (como mantenimiento, lineas de
ayuda, documentacion y manuales) se lleven a cabo o se produzcan con calidad.

/

Recursos para la administracién de la calidad
En la red mundial existen decenas de recursos para la Software Testing and Quality Engineering,
administracién de la calidad, incluidas sociedades profe- www.stickyminds.com
sionales, organizaciones emisoras de estdndares y fuentes de infor- Six Sigma Resources, www.isixsigma.com/
macién general. Los sitios siguientes constituyen un buen punto de www.asq.org/sixsigma/
partida: TicklT International, temas sobre certificacién de la calidad,
American Society for Quality (ASQ), Divisién de Software, www.tickit.org/international.htm
www.asq.org/software Total Quality Management (TQM)
Association for Computer Machinery, www.acm.org, Centro de Informacién general:
Datos y Andlisis del Software (DACS), www.dacs.dtic.mil/ www.gslis.utexas.edu/~rpollock/tgm.html
International Organization for Standardization (ISO), www.ise.ch Avrticulos:
ISO SPIECE, www.isospiece.com www.work911.com/tgqmarticles.htm
Malcolm Baldridge National Quality Award, Glosario:
www.quality.nist.gov www.quality.org/TQM-MSI/TQM-glossary.html
Qﬁware Engineering Institute, www.sei.cmu.edu/ J

INFORMACION

16.3

TAREAS, METAS Y METRICAS DEL ACS

El aseguramiento de la calidad del software se compone de varias tareas asociadas con dos
entidades diferentes: los ingenieros de software que hacen el trabajo técnico y un grupo de ACS
que tiene la responsabilidad de planear, supervisar, registrar, analizar y hacer reportes acerca
de la calidad.

Los ingenieros de software abordan la calidad (y ejecutan actividades para controlarla), apli-
cando métodos y medidas técnicas soélidos, realizando revisiones técnicas y haciendo pruebas
de software bien planeadas.

16.3.1 Tareas del ACS

El objetivo del grupo de ACS es auxiliar al equipo del software para lograr un producto final de
alta calidad. El Instituto de Ingenieria de Software recomienda un conjunto de acciones de ACS
que se dirigen a la planeacion, supervision, registro, analisis y elaboracion de reportes para el
aseguramiento de la calidad. Estas acciones son realizadas (o facilitadas) por un grupo indepen-
diente de ACS que hace lo siguiente:

www.FreelLibros.me

372

&¢Cudl es el rol de un
® grupo de ACS?

2 ci

“La calidod nunca es un acciden-
te; siempre es el resultado de
una infencion clara, un esfuerzo
sincero, una direccion inteligen-
te y una ejecucion habil;
representa la eleccion sabia de
muchas alternativas”.

William A. Foster

PARTE TRES ADMINISTRACION DE LA CALIDAD

Prepara el plan de ACS para un proyecto. El plan se desarrolla como parte de la pre-
paracion del proyecto y es revisado por todos los participantes. Las acciones de asegura-
miento de la calidad efectuadas por el equipo de ingenieria de software y por el grupo de
ACS son dirigidas por el plan. Este identifica las evaluaciones que se van a realizar, las au-
ditorias y revisiones por efectuar, los estandares aplicables al proyecto, los procedimientos
para reportar y dar seguimiento a los errores, los productos del trabajo que genera el grupo
de ACSy la retroalimentacion que se dara al equipo del software.

Participa en el desarrollo de la descripcion del software del proyecto. El equipo
de software selecciona un proceso para €l trabajo que se va a realizar. El grupo de ACS re-
visa la descripcion del proceso a fin de cumplir con la politica organizacional, los estanda-
res internos para el software, los estandares impuestos desde el exterior (como la norma
ISO-9001) y otras partes del plan del proyecto de software.

Revisa las actividades de la ingenieria de software a fin de verificar el cumpli-
miento mediante el proceso definido para el software. El grupo de ACS identifica,
documenta y da seguimiento a las desviaciones del proceso y verifica que se hayan hecho
las correcciones pertinentes.

Audita los productos del trabajo de software designados para verificar que se
cumpla con aquellos definidos como parte del proceso de software. El grupo de
ACS revisa productos del trabajo seleccionados; identifica, documenta y da seguimiento a
las desviaciones; verifica que se hayan hecho las correcciones necesarias y reporta periodi-
camente los resultados de su trabajo al gerente del proyecto.

Asegura que las desviaciones en el trabajo de software y sus productos se docu-
menten y manejen de acuerdo con un procedimiento documentado. Las desvia-
ciones pueden encontrarse en €l plan del proyecto, la descripcion del proceso, los estanda-
res aplicables o los productos del trabajo de la ingenieria de software.

Registra toda falta de cumplimiento y la reporta a la alta direcciéon. Se da segui-
miento a los incumplimientos hasta que son resueltos.

Ademas de estas acciones, el grupo de ACS coordina €l control y administracién del cambio
(véase el capitulo 22) y ayuda a recabar y analizar métricas para el software.

16.3.2 Metas, atributos y métricas

Las acciones de ACS descritas en la seccion anterior se realizan con objeto de alcanzar un con-
junto de metas pragmaticas:

Calidad de los requerimientos. La correccion, completitud y consistencia del modelo
de requerimientos tendra una gran influencia en la calidad de todos los productos del tra-
bajo que sigan. El ACS debe garantizar que el equipo de software ha revisado en forma
apropiada el modelo de requerimientos a fin de alcanzar un alto nivel de calidad.

Calidad del disefio. Todo elemento del modelo del disefio debe ser evaluado por el
equipo del software para asegurar que tenga alta calidad y que el disefio en si se apegue a
los requerimientos. El ACS busca atributos del disefio que sean indicadores de la calidad.

Calidad del codigo. El codigo fuente y los productos del trabajo relacionados (por ejem-
plo, otra informacion descriptiva) deben apegarse a los estandares locales de codificacion y
tener caracteristicas que faciliten darle mantenimiento. El ACS debe identificar aquellos
atributos que permitan hacer un analisis razonable de la calidad del codigo.

Eficacia del control de calidad. Un equipo de software debe aplicar recursos limitados,
en forma tal que tenga la maxima probabilidad de lograr un resultado de alta calidad. El

www.FreelLibros.me

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 373

@ Metas atributos y métricas de la calidad del software

Fuente: Adaptado de [Hya96].

Meta

Calidad de los
requerimientos

Calidad del diseno

Calidad del cédigo

Eficacia del control
de calidad

Atributo
Ambigiedad
Completitud
Comprensibilidad
Volatilidad

Trazabilidad
Claridad del modelo

Infegridad arquitecténica

Completitud de componentes

Complejidad de la inferfaz

Patrones
Complejidad
Facilidad de mantenimiento

Comprensibilidad

Reusabilidad

Documentacion

Asignacion de recursos
Tasa de finalizacion
Eficacia de la revision

Eficacia de las pruebas

Métrica

Nomero de modificadores ambiguos [por ejemplo, muchos, grande, amigable, efc. |
Nomero de TBA y TBD

Nomero de secciones y subsecciones

Nomero de cambios por requerimiento

Tiempo (por actividad) cuando se solicita un cambio

Nomero de requerimientos no frazobles hasta el disefio o cédigo

Nimero de modelos UML

Nomero de pdginas descriptivas por modelo

Nuomero de errores de UML

Existencia del modelo arquitecténico

Nomero de componentes que se siguen hasta el modelo arquitecténico
Complejidad del disefio del procedimiento

Nimero promedio de pasos para llegar a una funcién o contenido normal
Distribucién apropiada

Numero de patrones ufilizados

Complejidad ciclomatica

Factores de disefio [capitulo 8)

Porcentaje de comentarios infernos

Convenciones variables de nomenclatura

Porcentaje de componentes reutilizados

Indice de legibilidad

Porcentaje de personal por hora y por actividad
Tiempo de terminacion real versus lo planeado

Ver medicion de la revision (capitulo 14)

Nomero de errores de importancia crifica encontrados
Esfuerzo requerido pora corregir un error

Origen del error

ACS analiza la asignacion de recursos para las revisiones y pruebas a fin de evaluar si se
asignan en la forma mas eficaz.

La figura 16.1 (adaptada de [Hya96]) identifica los atributos que son indicadores de la exis-
tencia de la calidad para cada una de las metas mencionadas. También se presentan las métricas
que se utilizan para indicar la fortaleza relativa de un atributo.

16.4 ENroQUES FORMALES AL ACS

En las secciones anteriores, se dijo que la calidad del software es el trabajo de cada quien y que
puede lograrse por medio de una practica competente de la ingenieria de software, asi como de
la aplicacion de revisiones técnicas, de una estrategia de pruebas con relaciones multiples,
de un mejor control de los productos del trabajo de software y de los cambios efectuados sobre

www.FreelLibros.me

374

En lo direccion www.gslis.utexas.
edu/~rpollock /tqm.html, se
encuentra informacion Gfil acerca del
ACS y de los métodos formales de la
calidad.

16.5

¢Qué pasos se
requieren para efectuar
el ACS estadistico?

-~

2 ci

“Un andlisis estadistico, si se
realiza en forma apropiada, es
una diseccion delicada de las
incertidumbres, una cirugia de
las suposiciones.”

M. J. Moroney

PARTE TRES ADMINISTRACION DE LA CALIDAD

ellos, asi como de la aplicacion de estandares aceptados de la ingenieria de software. Ademas,
la calidad se define en términos de una amplia variedad de atributos de la calidad y se mide
(indirectamente) con el empleo de varios indices y métricas.

En las ultimas tres décadas, un segmento pequerio pero sonoro de la comunidad de la inge-
nieria de software ha afirmado que se requiere un enfoque mas formal para el ACS. Puede de-
cirse que un programa de computo es un objeto matematico. Para cada lenguaje de programa-
cion, es posible definir una sintaxis y semantica rigurosas, y se dispone de un enfoque igualmente
riguroso para la especificacion de los requerimientos del software (véase el capitulo 21). Si el
modelo de los requerimientos (especificacion) y el lenguaje de programacion se representan en
forma rigurosa, debe ser posible usar una demostracion matematica para la correccion, de
modo que se confirme que un programa se ajusta exactamente a sus especificaciones.

Los intentos de demostrar la correccién de un programa no son nuevos. Dijkstra [Dij76a] y
Linger, Mills y Witt [Lin79], entre otros, han invocado pruebas de la correccion de programas
y las han relacionado con el uso de conceptos de programacion estructurada (véase el capi-
tulo 10).

ASEGURAMIENTO ESTADISTICO DE LA CALIDAD DEL SOFTWARE

El aseguramiento estadistico de la calidad del software refleja una tendencia creciente en la
industria para que se vuelva mas cuantitativo respecto de la calidad. Para el software, el asegu-
ramiento estadistico de la calidad implica los pasos siguientes:

1. Serecabay clasifica la informacion acerca de errores y defectos del software.

2. Se hace un intento por rastrear cada error y defecto hasta sus primeras causas (por
ejemplo, no conformidad con las especificaciones, error de disefio, violacion de los es-
tandares, mala comunicacion con el cliente, etc.).

3. Con el uso del Principio de Pareto (80 por ciento de los defectos se debe a 20 por ciento
de todas las causas posibles), se identifica 20 por ciento de las causas de errores y de-
fectos (las pocas vitales).

4. Una vez identificadas las pocas causas vitales, se corrigen los problemas que han dado
origen a los errores y defectos.

Este concepto relativamente simple representa un paso importante hacia la creacion de un pro-
ceso adaptativo del software en el que se hacen cambios para mejorar aquellos elementos del
proceso que introducen errores.

16.5.1 Ejemplo general

A fin de ilustrar el uso de los métodos estadisticos para el trabajo de ingenieria de software,
suponga que una organizacion de ingenieria de software recaba informacion sobre los errores
y defectos cometidos en un periodo de un afio. Algunos de dichos errores se descubren a medida
que se desarrolla el software. Otros (defectos) se encuentran después de haber liberado el soft-
ware a sus usuarios finales. Aunque se descubren cientos de problemas diferentes, todos pue-
den rastrearse hasta una (o mas) de las causas siguientes:

e Especificaciones erroneas o incompletas (EEI)

e Mala interpretacion de la comunicacion con el cliente (MCC)

e Desviacion intencional de las especificaciones (DIE)

e Violacion de los estandares de programacion (VEP)

e Error en la representacion de los datos (ERD)

www.FreelLibros.me

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 375

Coleccién de
datos para hacer
ACS estadistico

.

20 por ciento del codigo tiene
80 por cierto de los errores.
Encuéntrelos, corrijalos”.

Lowell Arthur

Total Serio Moderado Menor
Error No. % No. % No. % No. %
IES 205 22% 34 27% 68 18% 103 24%
MCC 156 17% 12 9% 68 18% 76 7%
IDS 48 5% 1 1% 24 6% 23 5%
VPS 25 3% 0 0% 15 4% 10 2%
EDR 130 14% 26 20% 68 18% 36 8%
ICI 5 6% Q 7% 18 5% 31 7%
EDL 45 5% 14 11% 12 3% 19 4%
IET 95 10% 12 9% 35 9% 48 1%
1D 36 4% 2 2% 20 5% 14 3%
PIT 60 6% 15 12% 19 5% 26 6%
HCI 28 3% 3 2% 17 4% 8 2%
Totales Q42 100% 128 100% 379 100% 435 100%

e Interfaz componente inconsistente (ICI)

e Error en el diseno logico (EDL)

e Pruebas incompletas o erroneas (PIE)

e Documentacion inexacta o incompleta (DII)

e Error en la traduccion del lenguaje de programacion del disefio (LPD)
e Interfaz humano/computadora ambigua o inconsistente (IHC)

e Varios (V)

Para aplicar el ACS estadistico, se elabora la tabla de la figura 16.2. La tabla indica que EEI, MCC
y ERD son las pocas causas vitales que originan 53 por ciento de todos los errores. Sin embargo,
debe notarse que EEI, ERD, LPD y EDL se habrian seleccionado como las pocas causas vitales si
se consideran solo errores serios. Una vez que las pocas causas vitales han sido determinadas,
la organizacion de ingenieria de software comienza su accion correctiva. Por ejemplo, a fin de
corregir el MCC, deben implementarse técnicas para recabar requerimientos (capitulo 5) que
mejoren la calidad de la comunicacion y las especificaciones con el cliente. Para mejorar el ERD,
deben adquirirse herramientas para desarrollar la modelacion de casos y realizar datos y revi-
siones del disefio mas significativos.

Es importante notar que la accion correctiva se centra sobre todo en las pocas causas vitales.
En tanto éstas se corrigen, nuevas candidatas se van a la cumbre de la pila.

Las técnicas para el aseguramiento correctivo han sido propuestas para dar una mejora sus-
tancial de la calidad [Art97]. En ciertos casos, las organizaciones de software han tenido una
reduccion anual de 50 por ciento en defectos después de aplicar esta técnica.

La aplicacion del ACS estadistico y el Principio de Pareto se resumen en una sola oracion:
Pasa tu tiempo viendo las cosas que realmente importan, pero primero asegurate de que entiendes
lo que realmente importa...

16.5.2 Seis Sigma para la ingenieria de software

Seis Sigma es la estrategia mas ampliamente usada hoy para el aseguramiento estadistico de la
calidad en la industria. La estrategia Seis Sigma fue popularizada originalmente por Motorola en
la década de 1980 y “es una metodologia rigurosa y disciplinada que usa datos y analisis esta-
disticos para medir y mejorar el desempehno operativo de una compania, identificando y elimi-
nando defectos en procesos de manufactura y servicios” [ISI08]. El término Seis Sigma se deriva

www.FreelLibros.me

376

¢ Cudles son las etapas

¢ fundamentales de la
metodologia Seis
Sigma?

16.6

Q Cita:

“H precio inevitable de l con-
fiabilidad es lu simplicidad.”

C. A. R. Hoare

PARTE TRES ADMINISTRACION DE LA CALIDAD

de seis desviaciones estandar —3.4 casos (defectos) por millébn de ocurrencias—, lo que implica
un estandar de calidad extremadamente alto. La metodologia Seis Sigma define tres etapas
fundamentales:

e Definir los requerimientos del cliente y los que se le entregan, asi como las metas del
proyecto a través de métodos bien definidos de comunicacion con el cliente.

e Medir el proceso existente y su resultado para determinar el desempefo actual de la
calidad (recabar métricas para los defectos).

e Andalizar las métricas de los defectos y determinar las pocas causas vitales.

Si se trata de un proceso de software existente que se requiere mejorar, Seis Sigma sugiere dos
etapas adicionales:

e Mejorar €l proceso, eliminando las causas originales de los defectos.

e Conltrolar €l proceso para asegurar que €l trabajo futuro no vuelva a introducir las causas
de los defectos.

Estas etapas fundamentales y adicionales en ocasiones son conocidas como método DMAMC
(definir, medir, analizar, mejorar y controlar).

Si una organizacion va a desarrollar un proceso de software (en vez de mejorar uno exis-
tente), a las etapas fundamentales se agregan las siguientes:

e Diseniar el proceso para 1) evitar las causas originales de los defectos y 2) cumplir los
requerimientos del cliente.

e Verificar que el modelo del proceso en realidad evite los defectos y cumpla los requeri-
mientos del cliente.

Esta variacion en ocasiones es denominada método DMADV (definir, medir, analizar, disenar y
verificar).

El estudio detallado de Seis Sigma se deja a fuentes dedicadas a ese tema. Si el lector tiene
interés al respecto, consulte [ISI08], [Pyz303] y [Sne03].

CONFIABILIDAD DEL SOFTWARE

No hay duda de que la confiabilidad de un programa de cobmputo es un elemento importante de
su calidad general. Si un programa falla repetida y frecuentemente en su desempefo, importa
poco si otros factores de la calidad del software son aceptables.

La confiabilidad del software, a diferencia de muchos otros factores de la calidad, se mide
y estima directamente mediante el uso de datos histéricos del desarrollo. La confiabilidad del
software se define en términos estadisticos como “la probabilidad que tiene un programa de
computo de operar sin fallas en un ambiente especifico por un tiempo especifico” [Mus87]. Para
ilustrar lo anterior, digamos que se estima que el programa X tiene una confiabilidad de 0.999
durante ocho horas de procesamiento continuo. En otras palabras, si el programa X fuera a
gjecutarse 1 000 vecesy requiriera un total de ocho horas de tiempo de procesamiento continuo
(tiempo de procesamiento), es probable que operara correctamente (sin fallas) 999 veces.

Siempre que se trate de la confiabilidad del software, surge una pregunta crucial: ;qué signi-
fica el término falla? En el contexto de cualquier analisis de la calidad y confiabilidad del soft-
ware, la falla significa la falta de conformidad con los requerimientos del software. Pero, incluso
con esta definicion, hay gradaciones. Las fallas pueden ser leves o catastroficas. Una falla podria
corregirse en segundos, mientras que otra tal vez requiera de varias semanas o meses de trabajo
para ser corregida. Para complicar mas el asunto, la correccion de una falla quiza dé como re-
sultado la introduccion de otros errores que a su vez originen otras fallas.

www.FreelLibros.me

Los problemas de confiabilidad del
software casi siempre pueden
sequirse hasta encontrar defectos en
el disefio o en lo implementacidn.

L5
s%

CLAVE

Es importante observar que el fiempo
medio entre fallos y ofras medidas
relacionadas se basa en tiempo del
(PU, no en tiempo de reloj.

cc'onsm‘

Algunos aspectos de la disponibilidad
(que no se estudian aqui) no tienen
que ver con luos fallas. Por ejemplo,
fa progremacidn def tiempo fuera de
operacion (para funciones de apoyo)
hace que e/ software no esté
disponibe.

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 377

16.6.1 Mediciones de la confiabilidad y disponibilidad

Los primeros trabajos sobre confiabilidad del software trataban de extrapolar la teoria matema-
tica de la confiabilidad del hardware a la prediccion de la confiabilidad del software. La mayor
parte de modelos relacionados con el hardware se abocan a la falla debida al uso, en lugar de a
la que tiene su origen en los defectos de diseno. En el hardware, las fallas debidas al uso fisico
(por ejemplo, los efectos de temperatura, corrosion y golpes) son mas probables que las debidas
al disefio. Desafortunadamente, con el software ocurre lo contrario. En realidad, todas las fallas
del software pueden rastrearse en problemas de disefio o de implementacion; el uso (véase el
capitulo 1) no entra en el escenario.

Ha habido un debate permanente acerca de la relacion que existe entre los conceptos clave
en la confiabilidad del hardware y su aplicabilidad al software. Aunque es posible establecer un
vinculo irrefutable, es util considerar algunos conceptos sencillos que se aplican a ambos ele-
mentos del sistema.

Si se considera un sistema basado en computadora, una medida sencilla de su confiabilidad
es el tiempo medio entre fallas (TMEF):

TMEF = TMPF + TMPR

donde las siglas TMPF y TMPR significan tiempo medio para la falla y tiempo medio para la repa-
racion,? respectivamente.

Muchos investigadores afirman que el TMEF es una medicion mas util que otras relacionadas
con la calidad del software que se estudian en el capitulo 23. En pocas palabras, a un usuario
final le preocupan las fallas, no la cuenta total de defectos. Como cada defecto contenido en un
programa no tiene la misma tasa de fallas, la cuenta total de defectos indica muy poco acerca
de la confiabilidad del sistema. Por ejemplo, considere un programa que haya estado en opera-
cioén durante 3 000 horas de procesador sin falla. Muchos defectos de este programa estarian sin
detectar durante decenas de miles de horas antes de ser descubiertos. El TMEF de tales errores
oscuros podria ser de 30 000 o hasta 60 000 horas de procesador. Otros defectos, no descubier-
tos, podrian tener una tasa de fallas de 4 000 a 5 000 horas. Aun si cada uno de los errores en
esta categoria (los que tienen un TMEF largo) se eliminara, el efecto que tendrian sobre el soft-
ware seria despreciable.

Sin embargo, el TMEF puede ser problematico por dos razones: 1) proyecta un tiempo entre
fallas, pero no da una tasa de fallas proyectada y 2) puede interpretarse mal, como la vida pro-
medio, cuando no es esto lo que implica.

Una medicion alternativa de confiabilidad es la de las fallas en el tiempo (FET): medicion es-
tadistica de cuantas fallas tendra un componente en mil millones de horas de operacion. Por
tanto, 1 FET es equivalente a una falla en cada mil millones de horas de operacion.

Ademas de una medida de la confiabilidad, también debe desarrollarse otra para la disponi-
bilidad. La disponibilidad del software es la probabilidad de que un programa opere de acuerdo
con los requerimientos en un momento determinado de tiempo, y se define asi:

TMPF

_— X O,
TMPF + TMPR 100%

Disponibilidad =

La medicion del TMEF para la confiabilidad es igualmente sensible al TMPF y al TMPR. La
medicion de la disponibilidad es un poco mas sensible al TMPR, que es una medicion indirecta
de la facilidad que tiene el software para recibir mantenimiento.

2 Aunque tal vez se requiera depurar (y hacer otras correcciones relacionadas) como consecuencia de la falla, en
muchos casos el software funcionara de manera apropiada después de reiniciar, sin ninguin otro cambio.

www.FreelLibros.me

378

2 ci

“La seguridad de las personas
debe ser la ley médxima.”

Ciceron

2 ci

“No puedo imaginar ninguna
condicion que hiciera que esta
nave se hundiera. La construc-
cion naval moderna ha llegado
mds alld de eso”.

E. I. Smith, capitdn
del Titanic

En lu direccion www.safeware-
eng.com/, se encuentran varios

articulos sobre seguridad del software.

16.7

PARTE TRES ADMINISTRACION DE LA CALIDAD

16.6.2 Seguridad del software

La seguridad del software es una actividad del aseguramiento del software que se centra en la
identificacion y evaluacion de los peligros potenciales que podrian afectarlo negativamente y
que podrian ocasionar que falle todo el sistema. Si los peligros se identifican al principio del
proceso del software, las caracteristicas de su diseno se especifican de modo que los eliminen
o controlen.

Como parte de la seguridad del software, se lleva a cabo un proceso de modelado y analisis.
Inicialmente se identifican los peligros y se clasifican segiin su riesgo. Por ejemplo, algunos de
los peligros asociados con un control de crucero basado en computadora para un automovil
podrian ser los siguientes: 1) ocasionar una aceleracion incontrolada que no pudiera detenerse,
2) no responder a la presion en el pedal de frenado (porque se apague), 3) no encender cuando
se active el interruptor y 4) perder o ganar velocidad poco a poco. Una vez identificados estos
peligros en el nivel del sistema, se utilizan técnicas de analisis para asignar severidad y proba-
bilidad de ocurrencia a cada uno.? Para ser eficaz, el software debe analizarse en el contexto de
todo el sistema. Por ejemplo, un error sutil en la entrada de un usuario (las personas son com-
ponentes del sistema) podria ampliarse por una falla del software y producir datos de control
que situaran equivocadamente un dispositivo mecanico. Si y solo si se encontrara un unico
conjunto de condiciones ambientales externas, la posicion falsa del dispositivo mecanico oca-
sionaria una falla desastrosa. Podrian usarse técnicas de andlisis [Eri05], tales como arbol de
fallas, logica en tiempo real y modelos de red de Petri, para predecir la cadena de eventos que
ocasionarian los peligros, asi como la probabilidad de ocurrir que tendria cada uno de los even-
tos para generar la cadena.

Una vez identificados y analizados los peligros, pueden especificarse requerimientos relacio-
nados con la seguridad para el software. Es decir, la especificacion contendria una lista de
eventos indeseables y las respuestas deseadas del sistema ante ellos. Después se indicaria el
papel del software en la administracion indeseable de los mismos.

Aunque la confiabilidad y la seguridad del software estan muy relacionadas, es importante
entender la sutil diferencia entre ellas. La primera utiliza técnicas de analisis estadistico para
determinar la probabilidad de que ocurra una falla del software. Sin embargo, la ocurrencia de
una falla no necesariamente da como resultado un peligro o riesgo. La seguridad del software
examina las formas en las que las fallas generan condiciones que llevan a un peligro. Es decir,
las fallas no se consideran en el vacio, sino que se evaltian en el contexto de la totalidad del
sistema basado en computadora y de su ambiente.

El estudio exhaustivo de la seguridad del software estéd mas alla del alcance de este libro. Si
el lector esta interesado en la seguridad del software y en otros aspectos relacionados, consulte
[SmiO5], [Dun02] y [Lev95].

Las NORMAS DE caALIDAD ISO 90004

Un sistema de aseguramiento de la calidad se define como la estructura organizacional, respon-
sabilidades, procedimientos, procesos y recursos necesarios para implementar la administra-
cion de la calidad [ANS87]. Los sistemas de aseguramiento de la calidad se crean para ayudar a
las organizaciones a asegurar que sus productos y servicios satisfagan las expectativas del con-

3 Este enfoque es similar a los métodos de analisis del riesgo descritos en el capitulo 28. La diferencia principal es
el énfasis que se pone en aspectos de la tecnologia en lugar de en los relacionados con el proyecto.

4 Esta seccion, escrita por Michael Stovski, ha sido adaptada a partir de “Fundamentos de ISO 9000, libro de tra-
bajo desarrollado para Essential Software Engineering, video desarrollado por R. S. Pressman & Associates, Inc.
Se reimprime con su autorizacion.

www.FreelLibros.me

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE

379

sumidor gracias a que cumplan con sus especificaciones. Estos sistemas cubren una amplia
variedad de actividades, que contemplan todo el ciclo de vida del producto, incluidos planea-
cion, control, medicion, pruebas e informes, asi como la mejora de los niveles de calidad en todo
el proceso de desarrollo y manufactura. La norma ISO 9000 describe en términos generales los
elementos de aseguramiento de la calidad que se aplican a cualquier negocio, sin importar

los productos o servicios ofrecidos.

Para registrarse en alguno de los modelos del sistema de aseguramiento de la calidad conte-
nidos en la ISO 9000, por medio de auditores externos se revisan en detalle el sistema y las
operaciones de calidad de una compaiiia, respecto del cumplimiento del estandar y de la ope-
racion eficaz. Después de un registro exitoso, el grupo de registro representado por los auditores
emite un certificado para la compania. Auditorias semestrales de supervision aseguran el cum-

plimiento continuo de la norma.

En lo direccion www.tantara.ab.
ca/info.htm, se encuentran muchos
vinculos hacia los recursos de la norma
150 9000,/9001.

Los requerimientos esbozados por la norma ISO 9001:2000 se dirigen a temas tales como
responsabilidad de la administracion, sistema de calidad, revision del contrato, control del di-
seno, documentacion y control de datos, identificacion del producto y su seguimiento, control
del proceso, inspeccion y pruebas, acciones correctivas y preventivas, registros del control de
calidad, auditorias internas de calidad, capacitacion, servicio y técnicas estadisticas. A fin de que

una organizacion de software se registre en la ISO 9001:2000, debe establecer politicas y proce-
dimientos que cumplan cada uno de los requerimientos mencionados (y otros mas), y después
demostrar que sigue dichas politicas y procedimientos. Si el lector desea mas informacion sobre
la norma ISO 9001:2000, consulte [Ant06], [Mut03] o [Dob04].

e

La norma ISO 9001:2000

La descripcién siguiente define los elementos basicos de la

norma ISO 9001:2000. Informacién completa sobre la
misma se obtiene en la Organizacién Internacional de Normas
(wwwiso.ch) y en ofras fuentes de internet (como en www.
praxiom.com).

Establecer los elementos de un sistema de administracién de la cali-
dad.
Desarrollar, implementar y mejorar el sistema.
Definir una politica que ponga el énfasis en la importancia del sis-
tema.
Documentar el sistema de calidad.
Describir el proceso.
Producir un manual de operacién.
Desarrollar métodos para controlar (actualizar) documentos.
Establecer métodos de registro.
Apoyar el control y aseguramiento de la calidad.
Promover la importancia de la calidad entre todos los participantes.
KCentrorse en la satisfaccién del cliente.

INFORMACION

Definir un plan de calidad que se aboque a los objetivos, responsa-
bilidades y autoridad.
Definir mecanismos de comunicacién entre los participantes.
Establecer mecanismos de revisién para el sistema de administracion
de la calidad.
Identificar métodos de revisién y mecanismos de retroalimentacién.
Definir procedimientos para dar seguimiento.
Identificar recursos para la calidad, incluidos personal, capacitacién y
elementos de la infraestructura.
Establecer mecanismos de control.
Para la planeacién
Para los requerimientos del cliente
Para las actividades técnicas (tales como andlisis, disefio y pruebas)
Para la vigilancia y administracién del proyecto
Definir métodos de correccién.
Evaluar datos y métricas de la calidad.
Definir el enfoque para la mejora continua del proceso y la cali-

dad.

J

16.8 EL pLAN DE ACS

El Plan de ACS proporciona un mapa de ruta para instituir el aseguramiento de la calidad del
software. Desarrollado por el grupo de ACS (o por el equipo del software si no existe un grupo
de ACS), el plan funciona como plantilla para las actividades de ACS que se instituyen para cada

proyecto de software.

www.FreelLibros.me

380

PARTE TRES ADMINISTRACION DE LA CALIDAD

La IEEE [IEEE93] ha publicado una norma para el ACS. Esta recomienda una estructura que
identifica lo siguiente: 1) proposito y alcance del plan, 2) descripcion de todos los productos del
trabajo de ingenieria de software (tales como modelos, documentos, coédigo fuente, etc.) que se
ubiquen dentro del ambito del ACS, 3) todas las normas y practicas aplicables que se utilicen
durante el proceso del software, 4) acciones y tareas del ACS (incluidas revisiones y auditorias)
y su ubicacion en el proceso del software, 5) herramientas y métodos que den apoyo a las ac-
ciones y tareas de ACS, 6) procedimientos para la administracion de la configuracion del soft-
ware (véase el capitulo 22), 7) métodos para unificar las salvaguardas y para mantener todos los
registros relacionados con el ACS 'y 8) roles y responsabilidades relacionados con la calidad del
producto.

~

&%

- Administracién de la calidad del software
Q Obijetivos: El objetivo de las herramientas del ACS es

ayudar al equipo del proyecto a evaluar y mejorar la cali-
dad del producto del trabajo de software.

Mecanica: La mecdnica de las herramientas varia. En general, el

HERRAMIENTAS DE SOFTWARE

QPR ProcessGuide and Scorecard, desarrollada por QPR Software
(www.gpronline.com), da apoyo para establecer Seis Sigma
y ofros enfoques de administracién de la calidad.

Quality Tools and Templates, desarrollada por iSixSigma (www.

obijetivo consiste en evaluar la calidad de un producto especifico.
Nota: Es frecuente que dentro de la categoria de herramientas para el
ACS, se incluya una amplia variedad de herramientas para someter a
prueba al software (véanse los capitulos 17 a 20).

Herramientas representativas®

isixsigma.com/tt/), describe un amplio abanico de herra-
mientas y métodos Gtiles para la administracién de la calidad.

NASA Quality Resources, desarrollada por el Centro Coddard de
Vuelos Espaciales (sw-assurance.gsfc.nasa.gov/index.
php), contiene formatos, plantillas, listas de verificacién y herra-
mientas que son Utiles para el ACS.

ARM, desarrollada por lo NASA (state.gsfc.nasa.gov/tools/
index.html), proporciona mediciones que se utilizan para eva-
k luar la calidad de un documento de requerimientos de software.

)

16.9

RESUMEN

El aseguramiento de la calidad del software es una actividad sombrilla de la ingenieria de soft-
ware que se aplica en cada etapa del proceso del software. El ACS incluye procedimientos para
la aplicacion eficaz de métodos y herramientas, supervisa las actividades de control de calidad,
tales como las revisiones técnicas y las pruebas del software, procedimientos para la adminis-
tracion del cambio, y procedimientos para asegurar el cumplimiento de las normas y mecanis-
mos de medicion y elaboracion de reportes.

Para llevar a cabo el aseguramiento de la calidad del software de manera adecuada, deben
recabarse, evaluarse y divulgarse datos sobre el proceso de la ingenieria de software. Los mé-
todos estadisticos aplicados al ACS ayudan a mejorar la calidad del producto y del proceso de
software mismo. Los modelos de confiabilidad del software amplian las mediciones, lo que
permite que los datos obtenidos acerca de los defectos se extrapolen hacia tasas de falla pro-
yectadas y hacia la elaboracion de prondsticos de confiabilidad.

En resumen, deben tomarse en cuenta las palabras de Dunn y Ullman [Dun82]: “El asegura-
miento de la calidad del software es el mapeo de los preceptos administrativos y de las discipli-
nas de disefo del aseguramiento de la calidad, en el ambito administrativo y tecnologico apli-
cable a la ingenieria de software.” La capacidad de asegurar la calidad es la medida de una

5 Las herramientas mencionadas aqui no son obligatorias, sino una muestra de las que hay en esta categoria. En la
mayoria de casos, los nombres de las herramientas son marcas registradas por sus respectivos desarrolladores.

www.FreelLibros.me

CAPITULO 16 ASEGURAMIENTO DE LA CALIDAD DEL SOFTWARE 381

disciplina madura de la ingenieria. Cuando el mapeo se lleva a cabo con éxito, el resultado es
una ingenieria de software madura.

PROBLEMAS Y PUNTOS POR EVALUAR

16.1. Algunas personas afirman que “el control de la variacion es el corazén del control de calidad”. Como
todo programa que se crea es diferente de cualquier otro programa, ;cuales son las variaciones que se bus-
can y como se controlan?

16.2. ;Es posible evaluar la calidad del software si el cliente cambia continuamente lo que se supone que
debe hacerse?

16.3. La calidad y confiabilidad son conceptos relacionados, pero difieren en lo fundamental por varias
razones. Analice las diferencias.

16.4. :Un programa puede corregirse y aun asi ser confiable? Explique su respuesta.
16.5. ;Un programa puede corregirse y tener buena calidad? Explique lo que responda.

16.6. ;Por qué es frecuente que haya tensiones entre el grupo de ingenieria de software y el del asegura-
miento de la calidad? ¢Es saludable eso?

16.7. El lector tiene la responsabilidad de mejorar la calidad del software en su organizacion. ;Qué es lo
primero que debe hacer? ;Qué es lo siguiente?

16.8. Ademas de contar los errores y defectos, ¢hay otras caracteristicas cuantificables de software que
impliquen calidad? ;Cudles son y cobmo podrian medirse directamente?

16.9. El concepto del tiempo medio para la falla del software es objeto de criticas. Explique por qué.

16.10. Considere dos sistemas cuya seguridad sea critica y que estén controlados por computadora. Enliste
al menos tres peligros que se relacionen directamente con fallas del software.

16.11. Obtenga una copia de las normas ISO 9001:2000 e ISO 9000-3. Prepare una presentacion que analice
tres requerimientos de ISO 9001 y la forma en la que se apliquen en el contexto del software.

LECTURAS Y FUENTES DE INFORMACION ADICIONALES

Los libros de Hoyle (Quality Management Fundamentals, Butterworth-Heinemann, 2007), Tian (Software Qua-
lity Engineering, Wiley-IEEE Computer Society Press, 2005), El Emam (The ROI from Software Quality, Auer-
bach, 2005) y Horch (Practical Guide to Software Quality Management, Artech House, 2003), y Nance y Arthur
(Managing Soflware Quuality, Springer, 2002) son presentaciones excelentes en el nivel de administracion
acerca de los beneficios de los programas formales de aseguramiento de la calidad del software de compu-
tadora. Las obras de Deming [Dem&86], Juran (Juran on Quality by Design, Free Press, 1992) y Crosby ([Cro79],
asi como Quality is Still Free, McGraw-Hill, 1995) no se abocan al software, pero son una lectura obligada para
los altos directivos que tengan responsabilidades en el desarrollo del software. Gluckman y Roome (Everyday
Heroes of the Quality Movement, Dorset House, 1993) humanizan los aspectos de la calidad a través de la
historia de los actores participantes en el proceso. Kan (Metrics and Models in Software Quality Engineering,
Addison-Wesley, 1995) presenta un enfoque cuantitativo de la calidad del software.

Los libros de Evans (Total Quality: Management, Organization and Strategy, 4a. ed., South Western College
Publishing, 2004), Bru (Six Sigma for Managers, McGraw-Hill, 2005) y Dobb (ISO 9001:2000 Quality Registration
Step-by-Step, 3a. ed., Butterworth-Heinemann, 2004) son representativos de los muchos que se han escrito
sobre Seis Sigma € ISO 9001:2000, respectivamente.

Pham (System Software Reliability, Springer, 2006), Musa (Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, 2a. ed., McGraw-Hill, 2004) y Peled (Software Reliability Methods,
Springer, 2001) proporcionan guias practicas que describen los métodos para medir y analizar la confiabili-
dad del software.

Vincoli (Basic Guide to System Safety, Wiley 2006), Dhillon (Enginecring Safety, World Scientific Publishing
Co., Inc., 2003), Hermann (Software Safety and Reliability, Wiley-IEEE Computer Society Press, 2000), Storey
(Safety-Critical Computer Systems, Addison-Wesley, 1996) y Leveson [Lev95] aportan los analisis mas exhaus-
tivos que se hayan publicado hasta la fecha acerca de la seguridad del software y del sistema. Ademas, Van

www.FreelLibros.me

382

PARTE TRES ADMINISTRACION DE LA CALIDAD

der Meulen (Definitions for Hardware and Software Safety Engineers, Springer-Verlag, 2000) ofrece un compen-
dio completo de conceptos y términos importantes para la confiabilidad y la seguridad; Gartner (Testing
Safety-Related Software, Springer-Verlag, 1999) ofrece una guia especializada para probar sistemas cuya se-
guridad sea critica; Friedman y Voas (Software Assesment: Reliability Safety and Testability, Wiley, 1995) pro-
veen modelos Utiles para evaluar la confiabilidad y la seguridad. Ericson (Hazard Analysis Techniques for
System Safety, Wiley, 2005) estudia el dominio cada vez méas importante del anélisis de los peligros.

En internet, hay una amplia variedad de fuentes de informacion sobre el aseguramiento de la calidad del
software y otros temas relacionados. En el sitio web del libro, www.mhhe.com/engcs/compsci/press-
man/professional/olc/ser.htm, existe una lista actualizada de referencias existentes en la red mundial
que son relevantes para el ACS.

www.FreelLibros.me

