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Capitulo 22 Verificacidn y validacion
Capitulo 23 Pruebas del software
Capitulo 24 Validacién de sistemas criticos



Probar un programa es la forma méas comun de comprobar que satisface su especifica-
cién y hace lo que el cliente quiere que haga. Sin embargo, las pruebas sélo son una de
las técnicas de verificacion y validacidn. Algunas de estas técnicas, tales como las ins-
pecciones de programas, han sido utilizadas durante casi treinta afios, pero todavia no
se han convertido en tendencias principales de la ingenieria del software.

En esta parte del libro, se tratan las aproximaciones para verificar que el software sa-
tisface su especificacién y validar que también satisface las necesidades del cliente del
software. Esta parte del libro tiene tres capitulos relacionados con diferentes aspectos de
la verificacion y validacién:

B

El Capitulo 22 presenta una vision general de las aproximaciones para la verifica-
cion y validacion. Se explica la distincién entre verificacion y validacion, y el pro-
ceso de planificacion de la V & V. A continuacién, se describen las técnicas estati-
cas para la verificacién de los sistemas. Estas son técnicas en las que se
comprueba el c6digo fuente del programa en lugar de probar su ejecucion. Se es-
tudian las inspecciones de programas, el uso de anlisis estatico automatizado y,
finalmente, el rol de los métodos formales en el proceso de verificacion.

La prueba de programas es el tema del Capitulo 23. Se explica cémo las pruebas
se llevan a cabo normalmente en diferentes niveles y se muestran las diferencias
entre pruebas de componentes y pruebas del sistema. Utilizando ejemplos sen-
cillos, se introducen varias de las técnicas que pueden utilizarse para disediar ca-
sos de prueba para los programas y, por ultimo, se expone brevemente la auto-
matizacién de las pruebas. La automatizacién de las pruebas es el uso de
herramientas software que ayudan a reducir e tiempo y el esfuerzo implicado en
los procesos de pruebas.

El Capitulo 24 trata el tema mas especializado de validacion de sistemas criticos.
Para los sistemas criticos, se tiene que probar a un cliente o a un regulador ex-
terno que el sistema satisface su especificacién y requerimientos de confiabilidad.
Se describen las aproximaciones para la evaluacion de la fiabilidad, seguridad y
proteccion, y se explica como se puede utilizar la evidencia en los procesos de V
& V del sistema para el desarrollo de un caso de prueba de la confiabilidad del
sistema.
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Objetivos

El objetivo de este capitulo es introducir la verificacién y validacién
del software con especial énfasis en las técnicas de verificacién
estatica. Cuando haya leido este capitulo:

B comprenderd las diferencias entre verificacién y validacion del
software;

B habra sido introducido en las inspecciones de programas como
un método para descubrir defectos en los programas;

B comprenderd qué es el analisis estatico automatizade y cémo
se utiliza en verificacidn y validacion;

B comprendera como se utiliza la verificacidn estéatica en el
proceso de desarrollo de Sala Limpia.

Contenidos

22.1 Planificacién de la verificacion y validacién
22.2 Inspecciones de software

22.3 Andlisis estatico automatizado

22 4 Verificacién y métodos formales
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CAPITULO 22 m Verificacion y validacion

Durante y después del proceso de implementacién, el programa que se estd desarrollando debe
ser comprobado para asegurar que satisface su especificacién y entrega la funcionalidad es-
perada por las personas que pagan por el software, La verificacién y la validacién (V & V) es
¢l nombre dado a estos procesos de andlisis y pruebas. La verificacion y la validacidn tienen
lugar en cada etapa del proceso del software. V & V comienza con revisiones de los requeri-
mientos y continia con revisiones del disefio e inspecciones de cédigo hasta la prueba del pro-
ducto.

La verificacién y la validacién no son lo mismo, aunque a menudo se confunden. Boehm
(Boehm, 1979) expresd de forma sucinta la diferencia entre ellas:

» «Validacién: ;Estamos construyendo el producto correcto?»
» «Verificacién: ;Estamos construyendo el producto correctamente?»

Estas definiciones nos dicen que el papel de la verificacion implica comprobar que el soft-
ware estd de acuerdo con su especificacion. Deberia comprobarse que satisface sus requeri-
mientos funcionales y no funcionales. La validacidn, sin embargo, es un proceso mas gene-
ral. El objetivo de la validacién es asegurar que el sistema software satisface las expectativas
del cliente. Va mds alld de la comprobacién de que el sistema satisface su especificacién para
demostrar que el software hace lo que el cliente espera que haga. Tal y como se expone en la
Parte 2, las especificaciones del sistema software no siempre reflejan los deseos o necesida-
des reales de los usuarios y los propietarios del sistema.

El objetivo titimo del proceso de verificacion 'y validacion es establecer [a seguridad de
que el sistema software estd «hecho para un proposito». Esto significa que el sistema debe ser
lo suficientemente bueno para su uso pretendido. El nivel de confianza requerido depende del
propasito del sistema, las expectativas de los usuarios del sistema y el entorno de mercado ac-
tual del sistema:

1. Funcion del software. El nivel de confianza requerido depende de lo critico que sea el
software para una organizacion. Por ejemplo, el nivel de confianza requerido para el
software que se utiliza para controlar un sistema de segundad critico es mucho mas
alto que el requerido para un prototipo de un sisterna software que ha sido desarrolla-
do para demostrar algunas ideas nuevas.

2. Expectativas del usuario. Una reflexién lamentable sobre la industria del software
es que muchos usuarios tienen pocas expectativas sobre su software y no se sor-
prenden cuando éste falla durante su uso. Estdn dispuestos a aceptar estos fallos del
sistema cuando los beneficios de su uso son mayores que sus desventajas. Sin em-
bargo, la tolerancia de los usuarios a los fallos de los sistemas esta decreciendo des-
de los ailos 90. Actualmente es menos aceptable entregar sistemas no fiables, por
lo que las compaiiias de software deben invertir mas esfuerzo para verificar y vali-
dar.

3. Entorno de mercado. Cuando un sistema se comercializa, los vendedores del sistema
deben tener en cuenta los programas competidores, el precio que sus clientes estén dis-
puestos a pagar por el sistema y la agenda requerida para entregar dicho sistema.
Cuando una compafiia tiene pocos competidores, puede decidir entregar un programa
antes de que haya sido completamente probado y depurado, debido a que quiere ser el
primero en el mercado. Cuando los clientes no estin dispuestos a pagar precios altos
por el software, pueden estar dispuestos a tolerar mds defectos en €l. Todos estos fac-
tores pueden considerarse cuando se decide cudnto esfuerzo deberia invertirse en ¢l
procesade V & V,
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Figura 22.1
Verificacién y
validacién estdtica y
dinamica.

Dentro del proceso de V & V. existen dos aproximaciones complementarias para el anali-
sis y comprobacién de los sistemas:

1. Las inspecciones de software analizan y comprueban las representaciones del sistema
tales como el documento de requerimientos, los diagramas de diseno y el codigo fuen-
te del programa. Puede usarse las inspecciones en todas las etapas del proceso. Las ins-
pecciones pueden ser complementadas con algiin tipo de andlisis automnético del cé-
digo fuente de un sistema o de los documentos asociados. Las inspecciones de
software y los andlisis automaticos son técnicas de V & V estiticas, ya que no se ne-
cesita ejecutar el software en una computadora.

2. Las pruebas del software implican ejecutar una implementacién del software con da-
tos de prueba. Se examinan las salidas del software y su entorno operacional para com-
probar que funciona tal y como se requiere. Las pruebas son una técnica dindmica de
verificacion y validacion.

La Figura 22.1 muestra que las inspecciones del software y las pruebas son actividades
complementarias en el proceso del software. Las flechas indican las etapas en el proceso en
las que pueden utilizarse dichas técnicas. Por lo tanto, se pueden utilizar las inspecciones del
software en todas las etapas del proceso de desarrollo. Comenzando por los requerimientos,
puede inspeccionarse cualquier representacion legible del software. Tal y como se ha indica-
do, las revisiones de los requerimientos y del disefio son las principales técnicas utilizadas
para la deteccién de errores en el disefio y la especificacion.

Sélo puede probarse un sistema cuando esta disponible un prototipo © una version ejecu-
table del programa. Una ventaja del desarrollo incremental es que una versién probable del
sistema estd disponible en etapas tempranas del proceso de desarrollo. Las funcionalidades
pueden probarse a medida que se van afadiendo al sistema, por lo que no tiene que realizar-
se una implementacion completa antes de que comiencen las pruebas.

Las técnicas de inspeccion comprenden las inspecciones de programas, el andlisis auto-
matico del codigo fuente y la verificacion formal. Sin embargo, las técnicas estaticas sdlo pue-
den comprobar {a correspondencia enire un programa y su especificacion (verificacién), no
pueden demostrar que el software es operacionalmente 1itil. Tampoco se pueden utilizar téc-
nicas estdticas para comprobar las propiedades emergentes del software tales como su rendi-
miento y fiabilidad.

Aunque ¢l uso de las inspecciones del software no es generalizado, la prueba de progra-
mas stempre serd la principal 1écnica de verificacion y validacién. Las pruebas implican eje-
cutar el programa utilizando datos similares a los datos reales procesados por el programa, Los

Inspecciones

de software
/ Y
Especificaciones Disefio de Especificacion Diseflo Programa
de requerimientos alto nivel formal detallado

Prueba de
programas

Prototipo

~r
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Figura 22.2
El proceso de
depuracién.

defectos en los programas se descubren examinando las salidas del programa y buscando las
anomalias. Existen dos tipos distintos de pruebas que pueden utilizarse en diferentes etapas
del proceso del software:

I. Las pruebas de validacién intentan demostrar que ¢l software es el que el cliente quie-
re ——que satisface sus requenmientos—. Como parte de la prueba de validacién, se
pueden utilizar pruebas estadisticas para probar el rendimiento y la fiabilidad de los
programas, y para comprobar como trabaja en ciertas condiciones operacionales. En
el Capitulo 24 se analizan las pruebas estadisticas y la estimacion de la fiabilidad.

2. Las pruebas de defectos intentan revelar defectos en el sistema en lugar de simular su
uso operacional. EI objetivo de las pruebas de defectos es hallar inconsistencias entre
un programa y su especificacion. En el Capitulo 23 se tratan las pruebas de defectos.

Por supuesto, no existe un limite perfectamente definido entre estas aproximaciones de
pruebas. Durante las pruebas de validacién, se encontrardn defectos en el sistema. Durante
las pruebas de defectos, alguno de los tests mostrard que el programa satisface sus requeri-
mientos.

Normalmente, los procesos de V & V y depuracién se intercalan. A medida que se descu-
bren defectos en el programa que se estd probando, tiene que cambiarse éste para corregir ta-
les defectos. Sin embargo, las pruebas (o més generalmente la verificacién y validacién) y la
depuracion tienen diferentes objetivos:

I. Los procesos de verificacion y validacidn intentan establecer la existencia de defectos
en el sistema software.
2. La depuracién es un proceso (Figura 22.2) que localiza y corrige estos defectos.

No existe un método sencillo para la depuracién de programas. Los depuradores habilido-
s0s buscan patrones en las salidas de las pruebas en donde se ponen de manifiesto los defec-
tos y utilizan su conocimiento sobre el tipo de defecto, el patrén de salida, el lenguaje de pro-
gramacion y el proceso de programacion para localizar el defecto. Durante el proceso de
depuracion, puede utilizarse el conocimiento de errores comunes de programacién {como ol-
vidar incrementar un contador) y hacer corresponder éstos con los patrones observados. Tam-
bién deberfan buscarse errores caracteristicos de los lenguajes de programacién, tales como
errores de direccionamiento de punteros en C.

Localizar los defectos en un programa no siempre es un proceso sencitlo, ya que el defec-
to puede no estar cerca del punto en el que fallé el programa. Para localizar un defecto de un
programa, se puede tener que disefiar pruebas adicionales que reproduzcan el defecto origi-
nal y que determinen con precisién su localizacién en el programa. Se puede tener que hacer
manualmente una traza del programa, linea por linea. Las herramientas de depuracién que re-
copilan informacién sobre la ejecucion del programa también pueden ayudar a localizar la

fuente de un problema.
Casos de
prueba

Probar
nuevamente
el programa

Resultados
de pruebas

Localizar
arror

Especificaciton

Disefiar
reparacion
de errores

Reparar
errcres
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Las herramientas de depuracion interactivas generalmente forman parte de un conjunto de
herramientas de soporte del lenguaje que se integran con un sistema de compilacién. Estas
proporcionan un entorno de ejecucion especializado para el programa que permite acceder a
la tabla de simbolos del compilador y, desde aqui, a los valores de las variables del programa.
Se puede controlar la ejecucidn «paso a paso» del programa sentencia por sentencia. Después
de ejecutar cada sentencia, pueden examinar los valores de las variables y asi se puede des-
cubrir la localizacién del defecto.

Cuando se ha descubierto un defecto en el programa, hay que corregirlo y volver a validar
el sistema. Esto puede implicar volver a inspeccionar el programa o hacer pruebas de regre-
sién en las que se ejecutan de nuevo los tests existentes. Las pruebas de regresion se utilizan
para comprobar que los cambios en el programa no introducen nuevos defectos. La expe-
riencia ha demostrado que una alta proporcién de «reparaciones» de defectos son incomple-
tas o bien introducen nuevos defectos en el programa.

En principio, deberian repetirse todos los tests después de la reparacion de cada defecto.
En la prictica, esto normalmente supone un coste demasiado elevado. Como parte del plan de
pruebas, deberian identificarse dependencias entre los componentes y las pruebas asociadas
con cada componente. Esto es, deberia poderse establecer una traza entre los casos de prue-
ba y los componentes que son probados. Si esta trazabilidad se documenta, enlonces se pue-
de ejecutar un subconjunto de los casos de prueba del sistema para comprobar el componen-
te modificado y sus dependientes.

22.1 Planificacion de la verificacién y validacidn

La verificacion y validacion es un proceso caro. Para algunos sistemas, tales como los siste-
mas de tiempo real con restricciones no funcionales complejas, mds de la mitad del presu-
puesto para el desarrollo del sistema puede invertirse en V & V. Es necesaria una planifica-
cidén cuidadosa para obtener el maximo provecho de las inspecciones y pruebas y controlar
los costes del proceso de verificacién y validacidn,

Deberia comenzarse la planificacién de la verificacion y validacion del sistema en etapas
tempranas del proceso de desarrollo. El modelo de proceso de desarrollo del software mos-
trado en la Figura 22.3 se denomina a veces modelo V {girese la Figura 22.3 desde su extre-
mo de la derecha para ver la V). Es una instanciacién del modelo genérico en cascada (véase

Especificacion Especificacion Disefio Diseilo
de requerimientos § del sistema del sistema detallado '

Yy Y

Plan de pruebas
de integracion
del sistema

Plan de pruebas
de integracién
de los subsistemas §

Cédigo y prueba
de los médulos
y unidades

Plan de pruebas
de aceptacion

Prueba de
integracién de
los subsistemas

Prueba
de integracién
del sistema

Prueba
de aceptacién

Figura 22.3 Planes de pruebas como un enlace entre las pruebas y el desarrollo.
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Figura 22.4
La estructura de un
plan de pruebas.

el Capitulo 4) y muestra que los planes de pruebas deberian derivarse a partir de la especifi-
cacion y disefio del sistema. Este modelo también divide la V & V del sistema en varias eta-
pas. Cada etapa estd conducida por las pruebas que tienen que definirse para comprobar la
conformidad del programa con su disefio y especificacién.

Como parte del proceso de planificacion de V & V, habria que decidir un equilibrio entre
las aproximaciones estdticas y dindmicas de la verificacién y validacion, y pensar en estan-
dares y procedimientos para las inspecciones y pruebas del software, establecer listas de com-
probacion para conducir las inspecciones de programas (véase la Seccion 22.3) y definir el
plan de pruebas del software.

El relativo esfuerzo destinado a las inspecciones y las pruebas depende del tipo de sistema
a desarrollar y de los expertos de la organizacién en la inspeccion de programas. Como regla
general, cuanto mas critico sea el sistema, deberia dedicarse mas esfuerzo a las técnicas de
verificacién estiticas.

La planificacidn de las pruebas estd relacionada con el establecimiento de estandares para
el proceso de las pruebas, no sélo con la descripcidn de los productos de las pruebas. Los pla-
nes de pruebas, ademds de ayudar a los gestores a asignar recursos y estimar el calendario de
las prucbas, son de utilidad para los ingenieros del software implicados en el disefo y 1a rea-
lizacién de las pruebas del sistema. Estos ayudan al personal técnico a obtener una panora-
mica general de las pruebas del sistema y ubicar su propio trabajo en este contexto. Una bue-
na descripcion de los planes de pruebas y su relacion con los planes de calidad mas generales
se proporciona en Frewin y Hatton (Frewin y Hatton, 1986). Humphrey (Humphrey, 1989) y
Kit (Kit, 1995) también incluyen estudios sobre la planificacién de las pruebas.

Los principales componentes de un plan de pruebas para un sistema grande y complejo
se muestran en la Figura 22 4. Ademads de determinar el calendario y procedimientos de las
pruebas, el plan de pruebas define los recursos hardware y software que se requieren. Este
es ttil para los gestores del sistema que son los responsables de asegurar que estos recur-

El procesc da pruebe
Una descripcion de las principales fases def proceso de prueba. £stas podrian describirse como se
hizo anteriormente en este capitulo.

Trazabilidad de
Los usuarios son los mas interesados en que el sistema satisfaga sus requerimientos y las prue-
bas deberian planificarse para que todos los requerimientos se prueben individualmente.

Elenentos probados
Deberian especificarse los elementos del proceso del software que tienen que ser probados.

Calendaric de prusbas
Un calendario de todas las pruebas y 1a asignacién de recursos para este calendario se enlaza, ob-
viamente, con la agenda general del desarrollo del proyecto.

Procadimientos de negistro de las pruebas

No es suficiente ejecutar simplemente las pruebas; los resultados de las pruebas deben ser regis-
trados sistemdticamente. Debe ser posible auditar el proceso de pruebas para comprobar que se
ha llevado a cabo comectamente.

Requarimientos hardware y software
Esta seccidn deberia determinar las herramientas software requeridas y la utilizacién estimada del
hardware.

Restricdones
En esta seccién deberfan anticiparse las restricciones que afectan af proceso de pruebas como fa
escasez de personal.
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22.2

sos estan disponibles para el equipo de pruebas. Los planes de pruebas normalmente de-
berian incluir cantidades significativas de contingencias para que los desajustes en la im-
plementacion y el disefo puedan solucionarse y el personal pueda ser reasignadoe a otras
actividades.

Para sistemas mds pequefios, se puede utilizar un plan de pruebas menos formal, pero si-
gue siendo necesario un documento formal para soportar la planificacién del proceso de prue-
bas. Para algunos procesos dgiles como la programacion extrema, las pruebas son insepara-
bles de! desarrollo. Al igual que otras actividades de planificacién, la planificacién de las
pruebas también es incremental. En XP, el cliente es el dltimo responsable de decidir cuinto
esfuerzo deberia dedicarse a la prucbha del sistema.

Los planes de pruebas no son documentos estaticos, sino gue evolucionan durante ¢l pro-
ceso de desarrollo. Los planes de pruebas cambian debido a retrasos en otras etapas del pro-
ceso de desarrollo. Si parte de un sistema estd incompleto, el sistema no puede probarse como
un todo. Entonces tiene que revisarse el plan de pruebas para volver a desplegar y a asignar a
los encargados de las pruebas a alguna otra actividad, y recuperarlos cuando el software vuel-
va a estar disponible.

Inspecciones de software

Las inspecciones de software son un proceso de V & V estitico en el que un sistema software
se revisa para encontrar errores, omistones y anomalias. Generalmente, las inspecciones se
centran en el codigo fuente, pero puede inspeccionarse cualquier representacion legible del
software como los requerimientos o un modelo de disefio. Cuando se inspecciona un sistema,
se utiliza conocimiento del sistema, su dominio de aplicacion y el lenguaje de programacidn
o modelo de disefio para descubrir errores.

Existen tres ventajas fundamentales de la inspeccién sobre las pruebas:

1. Durante las pruebas, los errores pueden enmascarar (oculiar) otros errores. Cuando se
descubre un error, nunca se puede estar seguro de si otras anomalias de salida son de-
bidas a un nuevo error ¢ son efectos laterales del error original. Debido a que la ins-
peccién es un proceso estdtico, no hay que preocuparse de las interacciones entre
errores. Por 1o tanto, una tGnica sesion de inspeccién puede descubrir muchos errores
en un sistema.

2. Pueden inspeccionarse versiones incompletas de un sistema sin costes adicionales. 5i
un programa estd incompleto, entonces se necesita desarroliar software de soporte es-
pecializado para las pruebas a fin de probar aquellas partes que estdn disponibles. Esto,
obviamente, afiade costes al desarrollo del sistema.

3. Ademas de buscar los defectos en el programa, una inspeccién también puede consi-
derar atributos de calidad mds amplios de un programa tales como grado de cumpli-
miento con los estandares, portabilidad y mantenibilidad. Puede buscarse ineficien-
cias, algoritmos no adecuados y estilos de programacidn que podrian hacer que el
sistema fuese dificil de mantener y actualizar.

Las inspecciones son una idea antigua. Ha habido varios estudios y experimentos que han
demostrado que las inspecciones son mds efectivas para descubrir defectos que las pruebas
del programa. Fagan (Fagan, 1986) declaré que mds det 60% de los errores en un programa
pueden detectarse utilizando inspecciones de programa informales. Mills y otros (Mills er al.,
1987) sugieren que una aproximacién mds formal de la inspeccidn basada en la correccién de
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los argumentos puede detectar mas del 90% de los errores en un programa. Esta técnica se uti-
liza en el proceso de Sala Limpia descrilo en la Seccion 22.4. Selby y Basili (Selby et al.,
1987} compararon empiricamente la efectividad de las inspecciones y de las pruebas. Obser-
varon que la revision estatica de cédigo era mas efectiva y menos costosa que las pruebas de
defectos a la hora de encontrar defectos en los programas. Gilb y Graham (Gilb y Graham,
1993) también encontraron que esto era cierto.

Las revisiones y las pruebas tienen cada una sus ventajas e inconvenientes y deberian uti-
lizarse conjuntamente en el proceso de verificacion y validacion, En realidad, Gilb y Graham
sugieren que uno de los usos mas efectivos de las revisiones es la revision de los casos de prue-
ba para un sistema. Las revisiones pueden descubrir problemas con estos tests y ayudar a di-
sefiar formas mds efectivas para probar el sistema. Se puede empezar la V & V del sistema
con inspecciones en etapas tempranas del proceso de desarrollo, pero una vez que se integra
un sistema, se necesita comprobar sus propiedades emergentes y que la funcionalidad del sis-
tema es la que su propietario realmente quiere.

A pesar del éxito de las inspecciones, se ha demostrado que es dificil introducir las ins-
pecciones formales en muchas organizaciones de desarrollo de software. Los ingemieros de
software con experiencia en la prueba de programas a menudo son reacios a aceptar que las
inspecciones pueden ser mds efectivas para detectar defectos que las pruebas. Los gestores
pueden ser reacios debido a que las inspecciones requieren costes adicionales durante el di-
sefio y el desarrollo. Pueden no querer asumir el riesgo de que no obtendran los correspon-
dientes ahorros durante las pruebas de los programas.

No hay duda de que las inspecciones sobrecargan al inicio los costes de V & V del soft-
ware y conducen a un ahorro de costes sélo después de que los equipos de desarrollo adquie-
ran experiencia en su uso. Ademads, hay problemas précticos en cuanto a la organizacion de
las inspecciones: éstas requieren tiempo para organizarse y parecen ralentizar el proceso de
desarrollo. Es dificil convencer a un gestor muy presionado que este tiempo puede recuperarse
mads tarde debido a que se tendri que emplear menos tiempo depurando el programa.

El proceso de inspeccidn de programas

Las inspecciones de programas son revisiones cuyo objetivo es la deteccién de defectos en el
programa. El concepto de un proceso de inspeccion formalizado se desarrollé por pnmera vez
por IBM en los afios 70 (Fagan, 1976; Fagan, 1986). Actualmente es un método bastante uti-
lizado de verificacion de programas, especialmente en ingenieria de sistemas criticos. A par-
tir del método original de Fagan, se han desarrollado varias aproximaciones alternativas de
las inspecciones (Gilb y Graham, 1993). Todas ellas estdn basadas en un grupo con miembros
que tienen diferentes conocimientos realizando una revision cuidadosa linea por linea del ¢6-
digo fuente del programa.

La diferencia principal entre las inspecciones de programas y otros tipos de revisiones de
calidad es que el objetivo primordial de las inspecciones es encontrar defectos en el progra-
ma en lugar de considerar cuestiones de disefio mas generales. Los defectos pueden ser erro-
res 16gicos, anomalias en el cédigo que podrian indicar una condicién errénea, o el incum-
plimiento de los estindares del proyecto o de la organizacién. Por otra parte, otros tipos de
revision pueden estar mds relacionados con la agenda, los costes, el progreso frente a hitos
definidos o la evaluacién de si es probable que el software cumpla los objetivos fijados por la
organizacion.

La inspeccién de programas es un proceso formal realizado por un equipo de al menos cua-
tro personas. Los miembros del equipo analizan sistemdticamente el codigo y sefalan posibles
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Autor o propietario £l programador o diseflador responsable de generar el programa o documento. Responsable de
repacar los defecins descubiertos durante el proceso de inspeccidn.

Inspector Encuentra errores, omisiones e inconsistendias en los programas y documentos. Tambidn puede
identificar cuestiones mis generales que estdn fuera del mbito del equipo de inspeccidn.

Lector Presenta ol cidigo o documento en una reunién de inspeccién.

Secretario Registra los resultados de 18 reunién de inspeccion.

Presidente o moderador Gestiona el proceso y facilita la inspeccion. Realiza un informe de los resultados def proceso para
¢l moderador jefe.

Moderador jefe Responsable de las mejoras del proceso de inspeccion, actualizacion de las listas de comproba-

cibn, estinderes de desarrollo, etc.

Figura 22.5 Roles en el proceso de inspeccién.

defectos. En las propuestas originales de Fagan, se sugieren roles tales como autor, lector, pro-
bador y moderador. El lector lee el c6digo en voz alta al equipo de inspeccién, el probador ins-
pecciona el codigo desde una perspectiva de prueba y el moderador organiza el proceso.

A medida que las organizaciones ganan experiencia con la inspeccién, han surgido otras
propuestas para los roles del equipo. En un estudio de cémao la inspeccidn fue introducida con
éxito en el proceso de desarrollo de Hewlett-Packard, Grady y Van Slack (Grady y Van Slack,
1994) sugieren seis roles, tal y como se muestra en la Figura 22.5. No creen que sea necesa-
rio leer el programa en voz alta. La misma persona puede adoptar mas de un rol de forma que
el tamafio del equipo puede variar de una inspeccidn a otra. Gilb y Graham sugieren que los
inspectores deberian ser seleccionados para reflejar diferentes puntos de vista tales como
pruebas, usuario final y gestién de la calidad.

Las actividades en el proceso de inspeccion se muestran en la Figura 22.6. Antes de que
comience una inspeccion del programa, es esencial que:

1. Se tenga una especificacién precisa del cédigo a inspeccionar. Es imposible inspec-
cionar un componente a un nivel de detalle requerido para detectar defectos sin una
especificacidn completa.

2. Los miembros del equipo de inspecci6n estén familiarizados con los estandares de la
organizacion.

3. Se haya distribuido una versién compilable y actualizada del cédigo a todos los miem-
bros del equipo. No existe ninguna razén para inspeccionar codigo que esté «casi com-
pleto» incluso si un retraso provoca desfases en la agenda.

Planificacién

Y
Vision
de conjunto

i

{ Seguimiento ’
Repeticidn
del trabajo

Preparacidn

individual Y

Reunion de
inspeccion

Figura 22.6 El proceso de inspeccién.
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El moderador del equipo de inspeccidn es el responsable de la planificacién de la inspec-
ci6n. Esto implica seleccionar un equipo de inspeccidn, organizar una sala de reuniones y ase-
gurar que el material a inspeccionar y sus especificaciones estdn completas. El programa a ins-
peccionar se presenta al equipo de inspeccion durante la etapa de revision general cuando el
autor del codigo describe lo que el programa deberia hacer. A continuacion se procede a un
periodo de preparacion individual. Cada miembro del equipo de inspeccidn estudia la espe-
cificacidn y el programa y busca defectos en el cédigo.

La inspeccidn en si misma deberia ser bastante corta {(no mds de dos horas) y deberia cen-
trarse en la deteccion de defectos, cumplimiento de los estindares y programacion de baja ca-
lidad. El equipo de inspeccién no deberia sugerir como deben repararse estos defectos ni re-
comendar cambios en otros componentes.

A continuacion de la inspeccion, el autor del programa deberia realizar los cambios para
corregir los problemas identificados. En la etapa siguiente, el moderador deberia decidir si se
requiere una reinspeccion de cédigo. Puede decidir que no se requiere una reinspeccién com-
pleta y que los defectos han sido reparados con éxito. El programa entonces es aprobado por
el moderador para su entrega.

Durante una inspeccién, a menudo se utiliza una lista de comprobacién de errores de
programacién comunes para centrar el analisis. Esta lista de comprobacion puede basarse
en ejemplos de listas de comprobacion de libros o en conocimiento de los defectos que son
comunes en un dominio de aplicacion particular. Se necesitan diferentes hstas de compro-
bacién para distintos lenguajes de programacién debido a que cada lenguaje tiene sus pro-
pios errores caracteristicos. Humphrey (Humphrey, 1989), en un extenso estudio sobre las
inspecciones, da varios ejemplos de listas de comprobacién para inspeccion.

Esta lista de comprobacién varia de acuerdo con el lenguaje de programacion debido a los
diferentes niveles de comprobaci6n proporcionados por el compilador del lenguaje. Por ejem-
plo, un compilador Java comprueba que las funciones tienen el niimero correcto de parime-
tros; un compilador C no lo hace. En la Figura 22.7 se muestran posibles comprobaciones que
podrian realizarse durante un proceso de inspeccién. Gilb y Graham (Gilb y Graham, 1993)
resaltan que cada organizacién deberia desarrollar su propia lista de comprobacién de ins-
pecciones basada en estindares y practicas locales. Las listas de comprobacion deberian ser
actualizadas regularmente a medida que se encuentran nucvos tipos de defectos.

El tiempo necesario para una inspeccion y la cantidad de cédigo que puede abarcar de-
penden de la experiencia del equipo de desarrollo, el lenguaje de programacién y el dominio
de la aplicacién. Tanto Fagan en IBM como Barnard y Price (Barnard y Price, 1994), quienes
evaluaron el proceso de inspeccion para software de telecomunicaciones, llegan a conclusio-
nes similares:

1. Alrededor de 500 sentencias de cédigo fuente por hora pueden presentarse durante la
etapa de revision general.

2, Durante la preparacién individual, pueden examinarse alrededor de 125 sentencias de
codigo fuente por hora.

3. Pueden inspeccionarse por hora de 90 a 125 sentencias durante la reunién de inspec-
cion.

Con cuatro personas involucradas en un equipo de inspeccion, el coste de inspeccionar 100
lineas de cédigo es aproximadamente equivalente a un esfuerzo de una persona-dia. Esto su-
pone que la inspeccién en si misma lleva alrededor de una hora y que cada miembro del equi-
po emplea de una a dos horas en preparar la inspeccion. Los costes de las pruebas son muy
variables y dependen del mimero de defectos en el programa. Sin embargo, el esfuerzo re-
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Figura 22.7
Comprobaciones
de inspeccidn.

Defectos de datos  ¢Se inicializan todas las variables antes de que se utilicen sus valores?
{Tienen nombre todas las constantes?
{El imite superior de los vectores es igual al tamaiio del vector o al tamafio 21?
Si se utilizan cadenas de caracteres, itienen un delimitador explicitamente
asignado?
{Existe alguna posibilidad de que el bifer se desborde?

Defectos de control  Para cada sentencia condicional, {es correcta la condicion?
{Se garantiza que termina cada bucle?
{Estdn puestas correctamente entre llaves las sentencias compuestas?
En las sentencias case, {se tienen en cuenta todos los posibles casos?
Si se requiere una sentencia break después de cada caso en las sentencias
case, {se ha induido?

Defectos de iSe utilizan todas las variables de entrada?
entrada/salida {Se les asigna un valor a todas las variables de safida?
{Pueden provocar corrupciones de datos las entradas no esperadas?

Defectos de interfaz  {Las llamadas a funciones y a métodos tienen el nimero correcto de pard-
metros?
{Concuerdan los tipos de pardmetros reales y formales?
{Estén en el orden correcto los pardmetros?
Si los componentes acceden a memoria compastida, itienen el mismo mo-
delo de estructura de la memoria compartida?

Defectos de gestién  Si una estructura enlazada se modifica, ise reasignan correctamente todos
de almacenamiento  fos enlaces?
Si se utiliza almacenamiento dindmico, &se asigna correctamente el espadio
de memoria?
{Se desasigna explicitamente el espacio de memoria cuando ya no se nece-
sita?

Defectos de manejo  {Se tienen en cuenta todas las condiciones de error posibles?
de excepciones

querido para la inspeccion de programas es probablemente menos de la mitad del esfuerzo que
se requeriria para una prueba de defectos equivalente.

Algunas organizaciones (Gilb y Graham, 1993) han abandonado actualmente la prueba de
componentes en favor de las inspecciones. Han comprobado que las inspecciones de progra-
mas son tan efectivas a la hora de encontrar errores que los costes de las pruebas de compo-
nentes no son justificables. Estas organizaciones observan que las inspecciones de compo-
nentes, combinados con las pruebas del sistema, son la estrategia de V & V mis rentable. Tal
y como se indica mds adelante en el capitulo, esta aproximacién se utiliza en el proceso de
desarrollo de software de Sala Limpia.

La introduccion de las inspecciones tiene implicaciones para la gestién de proyectos. Una
gestion sensibilizada es importante si las inspecciones tienen que ser aceptadas por los equi-
pos de desarrollo del software. La inspeccidén de programas es un proceso publico de detec-
cién de errores comparado con el proceso mds privado de prueba de componentes. Inevita-
blemente, los errores cometidos por individuos se muestran a todo el equipo de programacion.
Los lideres de los equipos de inspeccién deben estar capacitados para gestionar el proceso cui-
dadosamente y desarrollar una cultura que proporcione apoyo cuando se detectan errores y
que no exista el sentimiento de culpa asociado a dichos errores.

A medida que una organizacién gana experiencia en el proceso de las inspecciones, pue-
de utilizar los resultados de éstas para ayudar a la mejora del proceso. Las inspecciones son
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22.3

Figura 22.8
Comprobaciones
del andlisis estatico
automatizado.

una forma ideal de recopilar datos sobre el tipo de defectos que se producen. El equipo de ins-
peccitn y los autores del cédigo que fue inspeccionado pueden sugerir razones de por qué se
introdujeron estos defectos. En donde sea posible, el proceso deberia entonces ser modifica-
do para eliminar las razones de los defectos, de forma que éstos puedan evitarse en sistemas
futuros.

Analisis estatico automatizado

Las inspecciones son una forma de anilisis estdtico —se examina el programa sin ejecutar-
lo—. Tal y como se ha indicado, las inspecciones a menudo estén dirigidas por listas de com-
probacién de errores y heuristicas que identifican errores comunes en diferentes lenguajes de
programacion, Para algunos errores y heuristicas, es posible automatizar el proceso de com-
probacién de programas frente a estas listas, las cuales han propiciado el desarrollo de anali-
zadores estéticos automatizados para diferentes lenguajes de programacion.

Los analizadores estdticos son herramientas software que escanean el ¢6digo fuente de un
programa y detectan posibles defectos y anomalias. Analizan el cédigo del programa y asf re-
conocen los tipos de sentencias en el programa. Pueden detectar si las sentencias estdn bien
formadas, hacer inferencias sobre el flujo de control del programa y, en muchos casos, cal-
cular el conjunto de todos los posibles valores para los datos del programa. Complementan
las facilidades de deteccién de errores proporcionadas por ¢l compilador del lenguaje. Pue-
den utilizarse como parte del procese de inspeccién o como una actividad separada del pro-
ceso V&V

El objetivo del andlisis estatico automatizado es llamar la atencién del inspector sobre las
anomalias del programa, tales como variables que se utilizan sin inicializaci6n, variables que
no se usan o datos cuyo valor podria estar fuera de alcance. Algunas de las comprobaciones
que se pueden detectar mediante analisis estitico se muestran en la Figura 22.8. Las anoma-
lias son a menudo el resultado de errores de programacién u omisiones, de forma que resal-
ten aspectos del programa que podrian funcionar mal. Sin embargo, deberia comprenderse que
estas anomalias no son necesariamente defectos en el programa. Pueden ser deliberadas o pue-
den no tener consecuencias adversas,
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Las etapas implicadas en el andlisis estdtico comprenden:

\. Andlisis del flujo de control. Esta etapa identifica y resalta bucles con maltiples sali-
das o puntos de entrada y c6digo no alcanzable. El cédigo no alcanzable es cddigo que
se salta con instrucciones goto no condicionales o que estd en una rama de una sen-
tencia condicional en la que la condicion nunca es cierta.

2. Andlisis del uso de los datos. Esta etapa revela como se utilizan las variables del pro-
grama. Detecta variables que se utilizan sin inicializacién previa, variables que se asig-
nan dos veces y no se utilizan entre asignaciones, y variables que se declaran pero nun-
ca se utilizan. El andlisis del uso de los datos también descubre pruebas initiles cuando
12 condicién de prueba es redundante. Las condictones redundantes son condiciones
que son siempre ciertas o siempre falsas.

3. Andlisis de interfaces. Este andlisis comprueba la consistencia de las declaraciones de
funciones y procedimientos v su utilizacidén. No es necesario si se utiliza para la im-
plementacion un lenguaje fuertemente tipado como Java, ya que el compilador lleva a
cabo estas comprobaciones. El andlisis de interfaces puede detectar errores de 1ipos en
lenguajes débilmente tipados como FORTRAN y C. El andlisis de interfaces también
puede detectar funciones y procedimientos que se declaran y nunca son llamados o re-
sultados de funciones que nunca se utilizan,

4.  Andlisis del flujo de informacion. Esta fase del andlisis identifica las dependencias en-
tre las variables de entrada y salida. Mientras no detecte anomalias, muestra como se
deriva el valor de cada vaniable de! programa a partir de otros valores de variables. Con
esta informaci6n, una inspeccién de cédigo deberia ser capaz de encontrar valores que
han sido calculados erréneamente. El anélisis de flujo de informacién puede también
mostrar las condiciones que afectan al valor de una variable.

5. Andlisis de caminos. Esta fase del analisis semdntico identifica todos los posibies ca-
minos en el programa y muestra las sentencias ejecutadas en dicho camino. Esencial-
mente desenreda el control del programa y permite que cada posible predicado sea
analizado individualmente.

Los analizadores estdticos son particularmente valiosos cuando se utiliza un lenguaje de
programacién como C. Este lenguaje no tiene reglas de tipos estrictas, y la comprobacion que
puede hacer el compilador de C es limitada. Por lo tanto, es ficil para los programadores co-
meter errores, y la herramienta de andlisis estitico puede autométicamente descubrir algunos
de los defectos de los programas. Esto es particularmente importante cuando C (y en menor
medida C++) se utiliza para desarrollo de sistemas criticos. En este caso, el anlisis estdtico
puede descubrir un gran nimero de errores potenciales y reducir los costes de prueba de for-
ma significativa.

No hay duda de que, para lenguajes como C, el andlisis estatico es una técnica efectiva para
descubrir errores en los programas. Este compensa los puntos débiles del disefio del lengua-
je de programacién. Sin embargo, los disefiadores de lenguajes de programacién modernos
como Java han eliminado algunas caracteristicas propensas a error. Todas las variables deben
ser inicializadas; no hay sentencias goto, de modo que es menas probable crear codigo inal-
canzable de forma accidental, y la gestién del almacenamiento es automdtica. Esta aproxi-
macién para evitar errores en lugar de detectar errores es mds efectiva a la hora de mejorar la
fiabilidad del programa. Aunque hay disponibles analizadores estiticos para Java, no son am-
pliamente usados. No estd claro si el nimero de errores detectados justifica el tiempo reque-
rido para analizar su salida.



484  CAPITULO 22 m Verificacion y validacion

Figura 22.9
Andlisis estatico LINT.

Por lo tanto, para ilustrar el andlisis estatico se utiliza un pequefio programa en C en lu-
gar de un programa Java. Los sistemas Unix y Linux incluyen un analizador estatico lla-
mado LINT para programas en C. LINT proporciona comprobacion estética, que es equi-
valente a la proporcionada por el compilador en un lenguaje fuertemente tipado como Java,
Un ejemplo de la salida producida por LINT se muestra en la Figura 22.9. En esta trans-
cripcion de una sesion terminal de UNIX, los comandos se muestran en cursiva. La prime-
ra linea de comandos (linea 138) lista el programa. Este define una funcién con un para-
metro, denominado printarray, y a continuacién llama a esta funcién con tres parametros.
Las variables i y € se declaran, pero nunca se les asigna ningin valor. El valor devuelto por
la funcién nunca se utiliza.

La linea 139 muestra la compilacion en C de este programa sin errores obtenido por el
compilador de C. A continuacién se hace una llamada al analizador estdtico LINT, que de-
tecta y muestra los errores del programa.

El analizador estitico muestra que las variables ¢ e i han sido utilizadas pero no iniciali-
zadas, y que printarray ha sido llamado con un nimero diferente de argumentos que los de-
clarados. También identifica el uso inconsistente del primer argumento en printarray y el he-
cho de que el valor de la funcién nunca se utiliza,

El anélisis basado en herramientas no puede sustituir a las inspecciones, ya que hay algu-
nos tipos de error que los analizadores estiticos no pueden detectar. Por ejemplo, pueden de-
tectar variables no inicializadas, pero no pueden detectar inicializaciones incorrectas. En len-
guajes débilmente tipados como C, los analizadores estdticos pueden detectar funciones que
tienen nimeros y tipos de argumentos erréneos, pero no pueden detectar situaciones en las que
un argumento incorrecto del tipo correcto se ha pasado a una funcidn.

Para tratar algunos de estos problemas, analizadores estdticos tales como LCLint (Orcero,
2000; Evans y Larochelle, 2002) soportan el use de anotaciones en las que los usuarios defi-
nen restricciones y comentarios con estilos en el programa. Estas restricciones permiten a un

138% more lint_exc

#indude <stdio.h>
printarray (Anarray)
int Anarray;

{
frinlf("%d"mrmv):
main ()

{

int AnamrayfS); int i; char ¢;
printarray (Anarray, i, c);
fﬂ‘mﬂw (Anarray) ;

13996 cc lint_exc
140% lint lint_ex.c

lint_ex.c(10): warning: ¢ may be used before set

lint_ex.c(10): wamning: i may be used before set

printarray: varisble # of args. lint_ex.c(4) :: lint_ex.c{10)
printarmay, arg. | used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) = lint_exc(11)
printf returns value which is always ignored
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programador especificar qué variables en una funcién no deberian cambiar, las variables glo-
bales a utilizar, y asi sucesivamente. El analizador estético puede a continuacién comprobar
el programa frente a esas restricciones y resaltar secciones de c6digo que parezcan estar in-
correctas.

Verificacion y métodos formales

Los métodos formales de desarrollo del software se basan en representaciones matematicas
del software, normalmente como una especificacién formal. Estos métodos formales se ocu-
pan principalmente del analisis matematico de la especificacién; de transformar la especifi-
cacién a una representacién mds detallada semanticamente equivalente; o de verificar for-
malmente que una representacion del sistema es semdnticamente equivalente a otra
representacion.

Usted puede pensar en el uso de métodos formales como la técnica dltima de verificacion
estatica. Los métodos formales requieren un andlisis muy detallado de la especificacién del
sistema y del programa, y su uso consume a menudo tiempo y resulta caro. Como conse-
cuencia, el uso de métodos formales estd restringido principalmente a los procesos de des-
arrollo de software de seguridad critico y seguro. El uso de especificaciones matematicas for-
males y la verificaci6n asociada fue encargado en los estdndares de defensa en el Reino Unido
para software de seguridad critico (MOD, 1995).

Los métodos formales pueden utilizarse en diferentes etapas en el proceso V & V:

I. Puede desarrollarse una especificacion formal del sistema y analizarse matematica-
mente para buscar inconsistencias. Esta técnica es efectiva para descubrir errores y
omistones de especificacion, tal y como se explicé en el Capitulo 10,

2. Puede verificarse formalmente, utilizando argumentos matemdticos, que el c6digo de
un sistema software es consistente con su especificacién. Esto requiere una especifi-
cacion formal y es efectiva para descubrir algunos errores de disefio y programacion.
Puede utilizarse un proceso de desarrollo transformacional o proceso de Sala Limpia
en el que una especificacién formal se transforma a través de una serie de representa-
ciones mas detalladas para soportar el proceso de verificacién formal.

El argumento para el uso de la especificacion formal y de la verificacién del programa aso-
ciado es que la especificacién formal fuerza un analisis detallado de la especificacién. Puede
revelar inconsistencias u omisiones potenciales que podrian de otra forma no ser descubier-
tas hasta que el sistema sea operacional. La verificacién formal demuestra que el programa
desarrollado satisface su especificacion, por lo que los errores de implementacién no com-
prometen la confiabilidad.

El argumento en contra del uso de la especificacion formal es que requicre notaciones es-
pecializadas. Estas sélo se pueden utilizar por personal entrenado especialmente y no pueden
ser comprendidas por expertos del dominio. Por lo tanto, los problemas con los requerimien-
tos del sistema pueden estar encubiertos por la formalidad. Los ingenieros software no pue-
den reconocer dificultades potenciales con los requerimientos debido a que no comprenden
el dominio; los expertos en el dominio no pueden encontrar estos problemas porque no com-
prenden la especificacién. Aunque Ia especificacién puede ser matematicamente consisiente,
puede no especificar las propiedades del sistema que son realmente necesarias.

Verificar un software no trivial consume una gran cantidad de tiempo y requiere herra-
mientas especializadas tales como demostradores de teoremas y expertos matematicos. Por lo
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tanto, es un proceso extremadamente caro y, a medida que el tamaio del sistema crece, los
costes de la verificacion formal crecen desproporcionadamente. En consecuencia, mucha gen-
te piensa que la verificacién formal no es muy rentable. El mismo nivel de confianza en el sis-
tema puede lograrse de forma méds econémica utilizando otras 1écnicas de validacion como
las inspecciones y pruebas de sistemas.

Se ha dicho algunas veces que el uso de métodos formales para el desarrollo de sistemas
conduce a sistemas mds fiables y seguros. No hay duda de que una especificacién formal de
un sisterna es menos probable que contenga anomalias que tengan que resolverse por el dise-
fiador del sistema. Sin embargo, la especificacién formal y la demostracién no garantiza que
el software ser4 fiable en el uso practico. Las razones de esto son las siguientes:

1. La especificacion puede no reflejar los requerimientos reales de los usuarios del sis-
tema. Lutz (Lutz, 1993) descubrié que muchos fallos experimentados por los usua-
rios eran consecuencia de errores y omisiones en la especificacién, que podrian no
haberse detectado por una especificacién formal del sistema. Ademds, los usuarios
del sistema raramente comprenden las notaciones formales, por lo que no pueden leer
directamente la especificacién formal para encontrar errores y omisiones.

2. La demostracion puede contener errores. Las demostraciones de los programas son
largas y complejas; por lo tanto, al igual que los programas complejos y grandes, nor-
malmente contienen errores.

3. Lademostracion puede asumir un patrén de uso que es incorrecto. Si el sistema no se
usa tal y como se ha anticipado, la demostracién puede ser invélida.

A pesar de sus desventajas, la opinién que aqui se formula (expuesta en el Capitulo 10) es
que los métodos formales juegan un papel importante en el desarrollo de sistemas software
criticos. Las especificaciones formales son muy efectivas descubriendo problemas de la es-
pecificacién que son las causas més comunes de los fallos de ejecucién del sistema. La veri-
ficacién formal incrementa la confianza en los componentes mds criticos de estos sistemas.
El uso de aproximaciones formales va en aumento a medida que los clientes lo solicitan y a
medida que cada vez més ingenieros estdn més familiarizados con estas técnicas.

Desarrollo de software de Sala Limpia

Los métodos formales se han integrado con varios procesos de desarrollo del software. En el
método B (Wordsworth, 1996), una especificacion formal se transforma en un programa a tra-
vés de una serie de transformaciones que preservan la correccion. SDL (Mitschele-Thiel,
2001) se usa para el desarrolio de sisternas de telecomunicaciones y VDM (Jones, 1986)y Z
(Spivey, 1992) han sido utilizados en procesos del tipo en cascada. Otra aproximacion bien
documentada que utiliza métodos formales es el proceso de desarrollo de Sala Limpia. El des-
arrollo de software de Sala Limpia (Mills et al., 1987; Cobb y Mills, 1990, Linger, 1994; Pro-
well et al., 1999) es una filosofia de desarrollo de software que utiliza métodos formales para
soportar inspecciones del software rigurosas.

Un modelo del proceso de Sala Limpia se muestra en la Figura 22.10. El objetivo de esta
aproximaci6n de desarrollo del software es obtener software con cero defectos. El nombre
«Sala Limpia» se derivé de la analogia con la fabricacién de unidades de semiconductores
en donde los defectos se evitaban mediante su fabricacién en una atmésfera ultralmpia. El
desarrollo de Sala Limpia es particularmente pertinente en este capitulo, debido a que reem-
plaza las pruebas de unidades de los componentes del sistema por inspecciones para com-
probar la consistencia de estos componentes con sus especificaciones.
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Especificar
formalmente
el sistema

Desarrollar
el perfil
operacional

Revision de errores

Verificar
formalmente
el codigo

Construir
el programa
estructurado 4

Definir los
incrementos
de software

Integrar el
incremento

/ Disefiar \ / Probar
» las pruebas »| el sistema
\ estéticas ’ integrado

Figura 22.10 El proceso de desarrollo de Sala Limpia.

La aproximacién de Sala Limpia al desarrollo de! software se basa en cinco estrategias
clave:

|. Especificacion formal. El software a desarrollar se especifica formalmente. Para ex-
presar la especificacién se utiliza un modelo de transicién de estados que muestra las
respuestas del sistema a los estimuios.

2. Desarrollo incremental. El software se divide en incrementos que se desarrollan y va-
lidan de forma independiente utilizando el proceso de Sala Limpia. Estos incrementos
se especifican, con la informaci6n de los clientes, en una etapa temprana del proceso.

3. Programacion estructurada. Se utiliza sélo un nimero limitado de estructuras de con-
trol y de abstracciones de datos. El proceso de desarrolio del programa es un proceso
de pasos de refinamiento de la especificacion. Se utiliza un nimero limitado de cons-
trucciones y el objetivo es transformar sistemdticamente la especificacién para crear
el c6digo del programa.

4. Verificacidn estdtica. El software desarrollado se verifica estiticamente utilizando ins-
pecciones de software rigurosas. No existe ningiin proceso de prueba de unidades o
modulos para los componentes de! cédigo.

5. Pruebas estadisticas del sistema. El incremento del software integrado es probado es-
tadisticamente, tal y como se explica en el Capitulo 24, para determinar su fiabilidad.
Estas pruebas estadisticas se basan en un perfil operacional, el cual se desarrolla en pa-
ralelo con la especificacion del sistema, tal y como se muestra en la Figura 22.10.

Existen tres equipos implicados cuando se utiliza el proceso de Sala Limpia para el desa-
rrollo de grandes sistemas:

1. El equipo de especificacién. Este grupo es responsable del desarrollo y mantenimien-
to de la especificacion del sistema, Este equipo produce especificaciones orientadas al
cliente (la definicién de requerimientos del usuario) y especificaciones matematicas
para verificacién. En algunos casos, cuando la especificacin es completa, el equipo
de especificacion también toma la responsabilidad del desarrollo.

2. El equipo de desarrollo. Este equipo tiene la responsabilidad de desarrollar y verifi-
car el software. El software no se ejecuta durante el proceso de desarrollo. Se utiliza
una aproximacion formal y estructurada para la verificacién basada en inspeccion de
codigo y complementada con argumentos de correccion.

3. Elequipo de certificacidn. Este equipo se encarga de desarrollar un conjunto de prue-
bas estadisticas para ejercitar el software después de que haya sido desarrollado. Es-
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tas pruebas se basan en especificacién formal. El desarrollo de los casos de prueba se
Hleva a cabo en paralelo con el desarrollo del software. Los casos de prueba se utilizan
para certificar la fiabilidad del software. Los modelos de crecimiento de fiabilidad (Ca-
pitulo 24) pueden utilizarse para decidir cudndo parar las pruebas.

El uso de la aproximaci6n de Sala Limpia conduce generalmente a software con muy po-
cos errores. Coob y Mills analizan varios proyectos de desarrollo con éxito de Sala Limpia
que tuvieron una tasa de fallos de funcionamiento muy baja en los sistemas entregados (Coob
y Mills, 1990). Los costes de estos proyectos fueron comparables a otros proyectos que usa-
ron técnicas de desarrollo convencionales.

La aproximacién al desarrollo incremental en el proceso de Sala Limpia consiste en en-
tregar funcionalidades criticas del cliente en incrementos tempranos. Las funciones del siste-
ma menos importantes se incluyen en incrementos posteriores. Por lo tanto, el cliente tiene la
oportunidad de probar estos incrementos criticos antes de que se haya entregado el sistema en
su totalidad. Si se descubren problemas con estos incrementos, el cliente comunica esta 1n-
formacion al equipo de desarrollo y solicita una nueva entrega del incremento.

Al igual que ocurre con la programacion extrema, esto significa que las funciones del clien-
te mds importantes reciben la mayor parte de la validacién. A medida que se desarrollan nue-
vos incrementos, éstos se combinan con los requerimientos existentes y se prueba el sistema
integrado. Por lo tanto, los requerimientos existentes se vuelven a probar con nuevos casos de
prueba a medida que se afiaden nuevos incrementos al sistema.

La inspeccion rigurosa de programas es una parte fundamental del proceso de Sala Lim-
pia. Se produce un modelo de estados del sistema como una especificacion del sistema. Este
se refina a través de una serie de modelos del sistema mis detallados hasta conseguir un pro-
grama ejecutable. La aproximacién utilizada para el desarrollo se basa en transformaciones
bien definidas que intentan preservar la correccién de cada transformacidn a una representa-
ci6n mi4s detallada. En cada etapa se inspecciona la nueva representacion, y se desarrollan ar-
gumentos mateméticamente rigurosos para demostrar que la salida de la informacién es con-
sistente con su entrada.

Los argumentos matemdticos utilizados en el proceso de Sala Limpia no son, sin embar-
go, demostraciones formales de correccién. Las demostraciones matemdticas formales de que
un programa es correcto con respeclo a su especificacién son demasiado caras de llevar a cabo.
Dependen del uso del conocimiento sobre la seméntica formal del lenguaje de programacion
para construir teorias que relacionan el programa y su especificacion formal. A continuacién
estas teorias deben probarse matematicamente, a menudo con la asistencia de grandes y com-
plejos programas de demostradores de teoremas. Debido a su alto coste y a que se necesitan
habilidades especiales, las demostraciones se desarrollan normalmente s6lo para la mayoria
de las aplicaciones de seguridad o de protecci6n criticas.

Se ha observado que la inspeccion y el andlisis formal son muy efectivos en el proceso de
Sala Limpia. La inmensa mayoria de los defectos se descubren antes de la ejecucién y no se
introducen en el software desarrollado. Linger (Linger, 1994) muestra que, en promedio, sélo
2,3 defectos por mil lineas de cédigo fuente fueron descubiertos durante las pruebas para pro-
yectos de Sala Limpia. Los costes totales de desarrollo no se incrementaron debido a que se
requirié menos esfuerzo para probar y reparar el software desarrollado.

Selby y otros (Selby et af., 1987), utilizando estudiantes como desarrolladores, llevaron a
cabo un experimento que comparaba el desarrollo de Sala Limpia con técnicas convenciona-
les. Comprobaron que la mayoria de los grupos pudieron usar con éxito el método de Sala
Limpia. Los programas producidos fueron de mayor calidad que los desarrollados utilizando
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técnicas tradicionales; el cédigo fuente tuve mds comentarios y una estructura mas simple.
Muchos de los equipos de Sala Limpia cumplieron la agenda de desarrollo.

El desarrollo de Sala Limpia funciona bien cuando se practica por ingenieros comprome-
tidos y habilidosos. Los informes sobre el éxito de la aproximacién de Sala Limpia en la in-
dustria provienen en su mayoria, aunque no de forma exclusiva, de gente que ya lo habia uti-
lizado. No se sabe si este proceso puede transferirse de forma efectiva a otros tipos de
organizaciones de desarrollo de software. Estas organizaciones pueden tener ingenieros me-
nos comprometidos y menos habitidosos. La transferencia de la aproximacién de Sala Lim-
pia. o en realidad de cualquier otra aproximacién en la que se utilicen métodos formales, a or-
ganizaciones menos avanzadas técnicamente, todavia continiia siendo un reto.

.-;L;i ‘Z:"A.: t:‘”i w-- ﬂ‘?l s .
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B La verificacion y la validacién no son lo mismo. La verificacién intenta mostrar que un programa satisface su
especificacion. La validacién intenta mostrar que el programa hace lo que el usuario requiere.

@ Los planes de pruebas deberian incluir una descripcién de ios elementos que hay que probar, la agenda de
pruebas, los procedimientos para gestionar el proceso de pruebas, los requerimientos hardware y software,
y cualquier problema de pruebas que probablemente pueda surgir.

B Las técnicas de verificacién estatica implican examinar y analizar el c6digo fuente del programa para detectar
errores. Deberian utilizarse con las pruebas de programas como parte del proceso V & V.

8 Las inspecciones de programas son efectivas para encontrar errores en los programas. El objetivo de una ins-
peccién es localizar defectos. Una lista de comprobacién de defectos deberia conducir el proceso de la ins-
peccién.

B Enunainspeccién de programas, un grupo pequefio comprueba et codigo de forma sistemética. Los miembros
del equipo incluyen un lider del equipo 0 moderador, el autor del cédigo, un lector gue presenta el codigo du-
rante la inspeccién y un probador que considera el c6digo desde una perspectiva de pruebas.

B Los analizadores estdticos son herramientas software que procesan un cédigo fuente de un programa y po-
nen de manifiesto anomalias tales como secciones de c6digo no utilizadas y variables sin inicializar, Estas ano-
malias pueden ser el resultado de defectos en el c6digo.

® El desarrollo de software de Sala Limpia se centra en técnicas estaticas para la verificacién de programas y
pruebas estadisticas para la certificacién de a fiabilidad del sistema, Se ha utilizado con éxito en ia produc-
cién de sistemas que tienen un alto nivel de fiabitidad.

LECTURAS ADICIONALES IS - PN SN DS A S

Software Quality Assurance: From Theory to implementation. Este libro proporciona una buena lectura de base so-
bre la verificacién y validacidn, con un capftulo particularmente bueno sobre revisiones e inspecciones. (D. Galin,
2004, Addison-Wesiey.)
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«Software inspection». Un nimero especial de una revista que contiene varios articulos sobre inspeccién de pro-
gramas, incluyendo una discusién del uso de dicha técnica con desarrollo orientado a objetos. [{EEE Software,
20(4), julio-agosto de 2003.]

«Software debugging, testing and verification». Este es un articulo general sobre verificacién y validacién y uno de
los pocos articulos que tratan las técnicas de pruebas y verificacién estética. [B. Halipern y P. Santhanam, /BM
Systems Journal, 41(1), enero de 2002.]

Cleanroom Software Engineering: Technology and Process. Un buen libro sobre la aproximacién de Sala Limpia que
contiene secciones sobre los fundamentos de dicha técnica, el proceso y un caso de estudio practico. (S. J. Powell
et al., 1999, Addison-Wesley.)
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Senale las diferencias entre verificacién y validacién, y explique por qué la validacién es un proceso parti-
cularmente dificil.

Explique por qué no es necesario que un programa esté completamente libre de defectos antes de que sea
entregado a sus clientes, ¢Hasta dénde se pueden utilizar las pruebas para validar que el programa cum-
ple con su propésito?

El plan de pruebas de la Figura 22.4 ha sido disefiado para sistemas a medida que tienen un documento
de requerimientos independiente. Sugiera cémo podria modificarse la estructura del plan de pruebas para
probar productos software comerciales.

Explique por qué las inspecciones de programas son una técnica efectiva para descubrir errores en un pro-
grama. éQué tipos de errores probablemente no sean descubiertos a través de las inspecciones?

Sugiera por qué una organizacién con una cultura elitista y competitiva podria probablemente encontrar
dificil introducir las inspecciones de programas como una técnicade V & V.

Utilizando su conocimiento de Java, C++, C o cualquier otro lenguaje de programacién, derive una lista de
comprobacién de errares comunes (no errores sintécticos) que podrian no ser detectados por un compi-
lador, pero que podrian ser detectados en una inspeccién de programas.

Genere una lista de condiciones que podrian ser detectadas por un analizador estatico paraJava, C++ u otro
lenguaje de programacién que usted utilice. Comente esta lista comparada con la lista dada en la Figu-
raz2.7.

Explique por qué puede ser rentable utilizar métodos formales en el desarrollo de sistemas software de
seguridad criticos. ¢ Por qué piensa usted que algunos desarrolladores de este tipo de sistemas estan en
contra det uso de los métodos formales?

Un gestor decide utilizar los informes de las inspecciones de programas como entrada para el proceso de
valoracion del personal. Estos informes muestran quién hace y quién descubre los errores en los progra-
mas. ¢Es &ste un comportamiento de gestién ético? ¢Podria ser ético si el personal fuese informado con
antelacién de que esto podria ocurrir? ¢Qué diferencia se podria generar en el proceso de inspeccién?

Una aproximacién comGnmente adoptada para las pruebas del sistema es probar el sistema hasta que se
agote el presupuesto de pruebas y entonces se entrega el sistema a los clientes. Comente la ética de esta
aproximacion.
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Objetivos

El objetivo de este capitulo es describir el proceso de las pruebas
del software e introducir varias técnicas de pruebas. Cuando haya
leido este capitulo:

B comprendera las diferencias entre pruebas de validacién y
pruebas de defectos;

B comprenderd los principios de las pruebas del sistema y las
pruebas de componentes;

B comprenderd tres estrategias que pueden utilizarse para
generar casos de pruebas del sistema;

m comprendera las caracteristicas esenciales de las herramientas
software que soportan la automatizacién de las pruebas.

Contenidos

23.1 Pruebas del sistema

23.2 Pruebas de componentes

23.3 Disefo de casos de prueba
23.4 Automatizacién de las pruebas
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Figura 23.1
Fases de pruebas.

En el Capitulo 4 se describié un proceso general de pruebas que comenzaba con la prueba
de unidades de programas individuales tales como funciones u objetos. A continuacin, és-
tas se integraban en subsistemas y sistemas, y se probaban las interacciones entre estas uni-
dades. Finalmente, después de entregar el sistema, el cliente puede llevar a cabo una serie
de pruebas de aceptacion para comprobar que el sistema funciona tal y como se ha especi-
ficado.

Este modelo de proceso de pruebas es apropiado para el desarrollo de sistemas grandes;
pero para sistemas mas pequefios, 0 para sistemas que se desarrollan mediante el uso de
scripts o reutilizacién, a menudo se distinguen menos etapas en ¢l proceso. Una visién mds
abstracta de las pruebas del software se muestra en la Figura 23.1. Las dos actividades fun-
damentales de pruebas son la prueba de componentes —probar las partes del sistema— y
la prueba del sistema —probar el sistema como un todo.

El objetivo de la etapa de la prueba de componentes es descubrir defectos probando com-
ponentes de programas individuales. Estos componentes pueden ser funciones, objetos o com-
ponentes reutilizables, tales como los descritos en el Capitulo 19. Durante las pruebas dei sis-
tema, estos componentes se integran para formar subsistemas o el sistema completo. En esta
etapa, la prueba del sistema deberia centrarse en establecer que el sistema satisface sus re-
querimientos funcionales y no funcionales, y no se comporta de forma inesperada. Inevita-
blemente, los defectos en los componentes que no se han detectado durante las primeras eta-
pas de las pruebas se descubren durante las prucbas del sistema.

Tal y como se ha explicado en el Capituio 22, el proceso de pruebas del software tiene dos
objetivos distintos:

1. Para demostrar al desarrollador v al cliente que el software satisface sus requeri-
mientos. Para el software a medida, esto significa que deberia haber al menos una prue-
ba para cada requerimiento de los documentos de requerimientos del sistema y del
usuario. Para productos de software genéricos, significa que deberia haber pruebas
para todas las caracteristicas del sistema que se incorporaran en la entrega del pro-
ducto. Tal y como se explicé en el Capitulo 4, algunos sistemas pueden tener una fase
de pruebas de aceptacién explicita en la que el cliente comprueba formalmente que el
sistema entregado cumple su especificacion.

2. Para descubrir defectos en el software en que el comportamiento de éste es incorrec-
to, no deseable o no cumple su especificacion. La prueba de defectos estd relacionada
con la eliminacién de todos los tipos de comportamientos del sistema no deseables, ta-
les como caidas del sistema, interacciones no permitidas con otros sistemas, cdlculos
incorrectos y cormupcion de datos.

El primer objetivo conduce a las pruebas de validacién, en las que se espera que el siste-
ma funcione correctamente usando un conjunto determinado de casos de prueba que reflejan
el uso esperado de aquél. El segundo objetivo conduce a la prucba de defectos, en los que los
casos de prueba se disefian para exponer los defectos. Los casos de prueba pueden ser deli-
beradamente oscuros y no necesitan reflejar cémo se utiliza normalmente el sistema. Para las
pruebas de validacién, una prueba con éxito es aquella en la que el sistema funciona correc-

Pruebas
de integracion

Pruebas del
componente

Desarrollador de software  Equipo de pruebas independiente
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tamente. Para las pruebas de defectos, una prueba con éxito es aquella que muestra un defec-
to que hace que el sistema funciona incorrectamente.

Las pruebas no pueden demostrar que el software estd libre de defectos o que se compor-
tard en todo momento como estd especificado. Siempre es posible que una prueba que se haya
pasado por alto pueda descubrir problemas adicionales con el sistema. Como dijo de forma
elocuente Edsger Dijkstra, una de las primeras figuras lideres en el desarrollo de la ingenie-
ria del software (Dijkstra er al.. 1972), «las pruebas s6lo pueden demostrar la presencia de
€ITOIES, NO SU AUSeNCid».

Generalmente, por lo tanto, el objetivo de las pruebas del software es convencer a los desa-
rrolladores del sistema y a los clientes de que el software es lo suficientemente bueno para su
uso operacional. La prueba es un proceso que intenta proporcionar confianza en el sofiware.,

Un modelo general del proceso de pruebas se muestra en la Figura 23.2. Los casos de prue-
ba son especificaciones de las entradas para la prueba y la salida esperada del sisterna mas una
afirmacion de o que se estd probando. Los datos de prueba son las entradas que han sido ide-
adas para probar el sistema. Los datos de prueba a veces pueden generarse automaticamente.
La generacion automatica de casos de prueba es imposible. Las salidas de las pruebas sélo
pueden predecirse por personas que comprenden lo que deberia hacer el sistema.

Las pruebas exhaustivas, en las que cada posible secuencia de ejecucién del programa es
probada, son imposibles. Las pruebas, por lo tanto, tienen que basarse en un subconjunto de
posibles casos de prueba. Idealmente, algunas companias deberian tener politicas para elegir
esle subconjunto en lugar de dejar esto al equipo de desarrollo, Estas politicas podrian basar-
se en politicas generales de pruebas, tal como una politica en la que todas las sentencias de
los programas deberian ejecutarse al menos una vez. De forma alternativa, las politicas de
pruebas pueden basarse en la experiencia de uso del sistema y pueden centrarse en probar las
caracteristicas del sistema operacional. Por ejemplo:

1. Deberian probarse todas las funciones del sistema a las que se accede a través de
menus.

2. Deben probarse todas las combinaciones de funciones (por ejemplo, formateado de
textos) a las que se accede a través del mismo mend,

3. En los puntos del programa en los que ¢! usuario introduce datos, todas las funciones
deben probarse con datos correctos e incorrectos.

A partir de la experiencia con los principales productos de software tales como procesa-
dores de texte u hojas de célculo, estd claro que durante el uso del producto se utilizan nor-
maimente guias similares durante las pruebas de los productos. Cuando se usan las caracte-
risticas del software por separado, éstas normalmente funcionan. Los problemas surgen, tal y
como explica Whittaker (Whittaker, 2002}, cuando no se han probado conjuntamente combi-
naciones de caracteristicas. El pone el ejemplo de como. en un procesador de texto comiin-
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Figura 23.2 Un modelo del proceso de pruebas del software.
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mente usado, el uso de notas al pie de pagina con un formato a dos columnas provoca un for-
mateado incorrecto del texto.

Como una parte del proceso V & V, los gestores tienen que tomar decisiones sobre quién
deberia ser responsable de las diferentes etapas de las pruebas. Para la mayoria de los siste-
mas, los programadores tienen la responsabilidad de probar los componentes que ellos han
desarrollado. Una vez que lo hacen, el trabajo se pasa a un equipo de integracién que integra
los médulos de diferentes desarrolladores, construye el software y prueba el sistema como un
todo. Para sistemnas criticos, puede utilizarse un proceso mas formal en el que probadores in-
dependientes son responsables de todas las etapas del proceso de prueba. En pruebas de sis-
temas criticos, las pruebas se desarrollan de forma independiente y se mantienen informes de-
tallados de los resultados de las mismas.

Las pruebas de componentes realizadas por los desarrolladores se basan nermalmente
en una comprensién intuitiva de cémo los componentes deberian operar. Las pruebas del
sistema, sin embargo, tienen que basarse en una especificacion escrita del sistema. Esta
puede ser una especificacién detallada de requerimientos del sistema, tal y como se indi-
cé en el Capitulo 6, o puede ser una especificacion orientada al usuario de mds alto nivel
de las caracteristicas que deberia implementar el sistema. Normalmente un grupo inde-
pendiente es responsable de las pruebas del sistema. Tal y como se explicé en el Capitulo
4, el equipo de pruebas del sistema trabaja a partir de los documentos de requerimientos
del sistema y del usuario para desarrollar los planes de pruebas del sistema (véase la Fi-
gura 4.10).

La mayoria de los tratamientos de pruebas comienzan con las pruebas de componentes y
a continuacion se realizan las pruebas del sistema. Se ha invertido de forma deliberada el or-
den de la exposicién en este capitulo debido a que cada vez més el desarrollo del software im-
plica integrar componentes reutilizables y configurar y adaptar software existente para satis-
facer requerimientos especificos. Todas las pruebas en tales casos son pruebas del sistema, y
no hay un proceso separado de pruebas de componentes.

Pruebas del sistema

Las pruebas del sistema implican integrar dos 0 mis componentes que implementan funcio-
nes del sistema o caracteristicas y a continuacion se prueba este sistema integrado. En un pro-
ceso de desarrollo iterativo, las pruebas del sistema se ocupan de probar un incremento que
va a ser entregado al cliente; en un proceso en cascada, las pruebas del sistema se ocupan de
probar el sistema completo.

Para la mayoria de los sistemas complejos, existen dos fases distintas de pruebas del sis-
tema:

1. Pruebas de integracidn, en las que el equipo de pruebas tiene acceso al cédigo fuen-
te del sistema. Cuando se descubre un problema, el equipo de integracién intenta en-
contrar la fuente del problema e identificar los componentes que tienen que ser depu-
rados. Las pruebas de integracién se ocupan principalmente de encontrar defectos en
el sistema.

2. Pruebas de entregas, en las que se prueba una version del sistema que podria ser en-
tregada a los usuarios. Aqui, el equipo de pruebas se ocupa de validar que el sistema
satisface sus requerimientos y con asegurar que el sistema es confiable. Las pruebas
de entregas son normalmente pruebas de «caja negra» en las que el equipo de pruebas
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se ocupa simplemente de demostrar si el sistema funciona o no correctamente. Los
problemas son comunicados al equipo de desarrollo cuyo trabajo es depurar el pro-
grama. Cuando los clientes se implican en las pruebas de entregas, éstas a menudo se
denominan pruebas de aceptaciéon. Si la entrega es lo suficientemente buena, el clien-
te puede entonces aceptarla para su uso.

Fundamentalmente, se puede pensar en las pruebas de integracién como las pruebas de sis-
temas incompletos compuestos por grupos de componentes del sistema. Las pruebas de en-
tregas consisten en probar la entrega de! sistema que se pretende proporcionar a los clientes.
Naturalmente, éstas se solapan, en especial cuando se utiliza desarrollo incremental y el sis-
tema para entregar estd incompleto. Generalmente, la prioridad en las pruebas de integracion
es descubrir defectos en el sistema, y la prioridad en las pruebas del sistema es validar que el
sistemna satisface sus requerimientos. Sin embargo, en la practica, hay una parte de prueba de
validacion y una parte de prueba de defectos durante ambos procesos.

Pruebas de integracion

El proceso de la integracion del sistema implica construir éste a partir de sus componentes
(véase el Capitulo 29) y probar el sistema resultante para encontrar problemas que pueden sur-
gir debido a la integracién de los componentes. Los componentes que se integran pueden ser
componentes comerciales, componentes reutilizables que han sido adaptados a un sistema
particular, 0 componentes nuevos desarroltados. Para muchos sistemas grandes, es probable
que se usen los tres tipos de componentes. Las pruebas de integracion comprueban que estos
componentes realmente funcionan juntos, son llamados correctamente y transfieren los datos
correctos en el tiempo preciso a través de sus interfaces.

La integracion del sistema implica identificar grupos de componentes que proporcionan ai-
guna funcionalidad del sistema e integrar éstos afiadiendo cédigo para hacer que funcionen
conjuntamente. Algunas veces, primero se desarrolla el esqueleto del sistema en su totalidad,
y se le afiaden los componentes. Esto se denomina inregracién descendente. De forma alter-
nativa, pueden integrarse primero los componentes de infraestructura que proporcionan ser-
VIC10s comunes, tales como el acceso a bases de datos y redes, y a continuacién pueden afia-
dirse los componentes funcionales. Esta es la integracion ascendente. En la practica, para
muchos sistemas, la estrategia de integracién es una mezcla de ambas, afiadiendo en incre-
mentos componentes de infraestructura y componentes funcionales. En ambas aproximacio-
nes de integracion, normalmente tiene que desarrollarse codigo adicional para simular otros
componentes y permitir que el sistema se ejecute.

La principal dificultad que surge durante las pruebas de integracion es la localizacién
de los errores. Existen interacciones complejas entre los componentes del sistema, y cuan-
do se descubre una salida anémala, puede resultar dificil identificar dénde ha ocurrido el
error. Para hacer mds ficil la localizacién de errores, siempre deberfa utilizarse una apro-
ximacidn incremental para la integracion y pruebas del sistema. Inicialmente, deberia in-
tegrarse una configuracion del sistema minima y probar este sistema. A continuacién, de-
berian afiadirse componentes a esta configuracién minima y probar después de anadir cada
incremento.

En el ejemplo mostrado en l1a Figura 23.3, A, B, C y D son componentes, y desde T1 has-
ta TS son conjuntos de pruebas relacionados de las caracteristicas incorporadas al sistema. T1,
T2 y T3 se ejecutan primero sobre un sistema formado por los componentes A y B (el siste-
ma minimo). Si tales componentes revelan defectos, éstos se corrigen. El componente C se
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Figura 23.3
Pruebas

de integracién
incrementales.

integra y T1, T2 y T3 se repiten para asegurar que no ha habido interacciones no esperadas
con A y B. Si surgen problemas en estas pruebas, esto significa probablemente que son debi-
dos a las interacciones con el nuevo componente. Se localiza el origen del problema, simpli-
ficando asi la localizacién y reparacion de defectos. El conjunto de pruebas T4 se ejecuta tam-
bién sobre el sistema. Finalmente, el componente D se integra y se prueba utilizando las
pruebas existentes y nuevas (T35).

Cuando se planifica la integracion, tiene que decidirse el orden de integracién de Jos com-
ponentes. En un proceso como XP, ¢l cliente se implica en el proceso de desarrollo y decide
qué funcionalidad deberia incluirse en cada incremento del sistema. Por lo tanto, la integra-
cién del sistema esté dirigida por las prioridades del cliente. En otras aproximaciones al des-
arrollo, cuando se integran componentes comerciales y componentes especialmente desarro-
llados, el cliente puede no estar implicado y el equipo de integracion decide sobre las
prioridades de la integracion.

En tales casos, una buena practica es integrar primero los componentes que implemen-
tan las funcionalidades mas frecuentemente utilizadas. Esto significa que los componentes
mds utilizados recibirdn la mayoria de las pruebas. Por ejemplo, en el sistema de libreria
LIBSYS, deberia comenzarse integrando la facilidad de busqueda para que, en un sistema
minimo, los usuarios puedan buscar los documentos que necesitan. A continuacién, se de-
beria afiadir la funcionalidad para permitir a los usuarios descargar un documento, y des-
pués agregar progresivamente los componentes que implementan otras caracteristicas del
sistema,

Por supuesto, la realidad es raramente tan simple como este modelo sugiere. La imple-
mentacién de las caracteristicas puede estar repartida entre varios componentes. Para probar
una nueva caracleristica, pueden tener que integrarse varios componentes diferentes. Las
pruebas pueden revelar errores en las interacciones entre estos componentes individuales y
otras partes del sistema, La reparacion de errores puede ser dificil debido a que un grupo de
componentes que implementan la caracteristica del sistema pueden tener que cambiarse. Ade-
mis, la integracién y prueba de un nuevo componente puede cambiar el patrén de las inter-
acciones de componentes ya probados. Se pueden manifestar errores que no habian apareci-
do en las pruebas de la configuracion mds simple.

Estos problemas significan que, cuando se integra un nuevo incremento, €s importante vol-
ver a ejecutar las pruebas para incrementos previos, asf como las nuevas pruebas requeridas
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Figura 23.4
Pruebas de caja
negra.

para verificar la nueva funcionalidad del sistema. Volver a ejecutar un conjunto existente de
pruebas se denormina pruebas de regresion. Si las pruebas de regresién ponen de manifiesto
problemas, entonces tiene que comprobarse si éstos son problemas en el incremento previo
que el nuevo incremento ha puesto de manifiesto o si éstos son debidos al incremento anadi-
do de funcionalidad.

Las pruebas de regresidén son claramente un proceso caro y no resultan practicas sin algin
soporle automatizado, En programacion extrema, tal y como se vio en el Capitulo 17, todas
las pruebas se escriben como cddigo ejecutable en donde la entrada de las pruebas y las sali-
das esperadas son especificadas y automdticamente comprobadas. Cuande esto se usa en un
marco de trabajo de pruebas automatizado como JUnit (Massol y Husted, 2003), esto signi-
fica que las pruebas pueden volverse a ejecular automdticamente. Es un principio basico de
la programacién extrema que el conjunto completo de pruebas se ejecute siempre que se in-
tegre nuevo codigo y que este nuevo codigo no sea aceptado hasta que todas las pruebas se
¢jecuten con €xito.

Pruebas de entregas

Las pruebas de entregas son el proceso de probar una entrega del sistema que sera distribui-
da a los clientes. El principal objetivo de este proceso es incrementar la confianza del sumi-
nistrador en que el sistema satisface sus requerimientos. Si es asi, éste puede entregarse come
un producto o ser entregado al cliente. Para demostrar que el sistema satisface sus requeri-
mientos, tiene que mostrarse que éste entrega la funcionalidad especificada, rendimiento y
confiabilidad, y que no falla durante su uso normal.

Las pruebas de entregas son normalmente un proceso de pruebas de caja negra en las que
las pruebas se derivan a partir de la especificacién del sistema. El sistema se trata como una
caja negra cuyo comportamiento sélo puede ser determinado estudiando sus entradas y sus sa-
lidas relacionadas. Otro nombre para esto es pruebas funcionales, debido a que al probador
solo le interesa la funcionalidad y no la implementacion del software.

La Figura 23.4 ilustra el modelo de un sistema que se admite en las pruebas de caja negra.
El probador presenta las entradas al componente o al sistema y examina las correspondientes
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salidas. Si las salidas no son las esperadas (es decir, si las salidas pertenecen al conjunto §,),
entonces la prueba ha detectadoe un problema con el software.

Cuando se prueban las entregas del sistema, deberia intentarse «romper» el software eli-
giendo casos de prueba que pertenecen al conjunto E, en la Figura 23.4. Es decir, el objetivo
deberia ser seleccionar entradas que tienen una alta probabilidad de generar fallos de ejecu-
cién del sistema (salidas del conjunto S,). Se utiliza la experiencia previa de cudles son las
pruebas de defectos que probablemente tendran éxito y las guias de pruebas ayudarin a ele-
gir la adecuada.

Autores adecuada como Whittaker (Whittaker, 2002) han recogido su experiencia de prue-
bas en un conjunto de guias que incrementan la probabilidad de que las pruebas de defectos
tengan éxito. Algunos ejemplos de estas guias son:

bl e B

Elegir entradas que fuerzan a que el sistema genere todos los mensajes de error.
Disefiar entradas que hacen que los buiferes de entrada se desborden.

Repetir la misma entrada o series de entradas varias veces.

Forzar a que se generen las salidas invalidas.

Forzar los resultados de los cilculos para que sean demasiado grandes o demasiado
pequenos.

Para validar que el sistema satisface los requerimientos, la mejor aproximacién a utilizar
es la prueba basada en escenarios, en la que se idean varios escenarios y se desarrollan casos
de prueba a partir de estos escenarios. Por ejemplo, el siguiente escenario podria describir
cémo el sistemna de libreria LIBSYS, tratado en capitulos anteriores, podria utilizarse:

Unra estudiante escocesa que estudia la Historia Americana tiene que escribir un tra-
bajo sobre «la mentalidad sobre las fronteras en el Este Americano desde 1840 a 1880».
Para hacer esto, necesita encontrar documentacion de varias bibliotecas. Se registra
en el sistema LIBSYS v utiliza la facilidad de biisqueda para ver si puede acceder a los
documentos originales de esa época. Descubre trabajos en varias bibliotecas universi-
tarias de Estados Unidos y descarga copias de algunos de ellos. Sin embargo, para uno
de los documentos, necesita tener confirmacion de su Universidad de que ella es en ver-
dad estudiante y de que el uso del documento es para fines no comerciales. La estu-
diante entonces utiliza la facilidad de LIBSYS que le permite solicitar dicho permiso y
registrar su peticion. Si ésta es aceptada, el documento podrd descargarse en el servi-
dor de la biblioteca registrada y ser impreso. La estudiante recibe un mensaje de
LIBSYS informdndole que recibird un mensaje de correo electronico cuando el docu-
mento impreso esté disponible para ser recogido.

A partir de este escenario, es posible generar varias pruebas que pueden aplicarse a la en-
trega propuesta de LIBSYS:

1.

Probar el mecanismo de login usando logins correctos e incorrectos para comprobar
que los usuarios validos son aceptados y que los invélidos son rechazados.

Probar la facilidad de busqueda utilizando consultas con fuentes conocidas para com-
probar que el mecanismo de bisqueda realmente encuentra los documentos.

Probar la facitidad de presentacion del sistema para comprobar que la informacién so-
bre los documentos se visualiza adecuadamente.

Probar el mecanismo para solicitar permisos para descargas.

Probar la respuesta de correo electrénico indicando que el documento descargado esta
disponible.
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Figura 23.5
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Para cada una de estas pruebas, deberia disefiarse un conjunto de pruebas que incluyan en-
tradas vélidas e invalidas y que generen salidas vidlidas ¢ invalidas. También deberian orga-
nizarse pruebas basadas en escenarios para que los escenarios mds probables sean probados
primero, y los escenarios inusuales o excepcionales sean probados mids tarde, de forma que
el esfuerzo se centre en aquellas partes del sistema que reciben un mayor uso.

Si se han utilizado casos de uso para describir los requerimientos del sistema, estos casos
de uso y los diagramas de secuencia asociados pueden ser una base para las pruebas del sis-
tema. Los casos de uso y los diagramas de secuencia pueden emplearse ambos durante la in-
tegracién y pruebas de entregas. Para ilustrar esto, se utiliza un ejemplo del sistema de esta-
cién meteoroldgica descrito en el Capitulo 14.

La Figura 23.5 muestra la secuencia de operaciones en la estacion meteorologica cuando
responde a una peticion para recoger datos del sistema de mapas. Puede utilizarse este dia-
grama para identificar operaciones que serdn probadas y ayudar al disefio de los casos de prue-
ba para ejecutar las pruebas. Por lo tanto, la emisién de una peticién de un informe dara lu-
gar la ejecucion de la siguiente secuencia de métodos:

CommsController:request — WeatherStation:report — WeatherData:summarise

El diagrama de secuencias también puede utilizarse para identificar entradas y salidas que
tienen que crearse para las pruebas:

1. Una entrada de una peticién de un informe deberia tener un reconocimiento asociado
y se deberfa devolver en tltima instancia un informe a partir de la peticién. Durante
las pruebas, se deberian crear datos resumidos que puedan utilizarse para comprobar
que el informe estd organizado correctamente.

2. Una peticidén de entrada de un informe a WeatherStation provoca la generacién de
un informe resumido. Se puede probar esto de forma aislada creando datos corres-
pondientes al resumen que se ha preparado para las pruebas de CommsController y
comprobar que el objeto WeatherStation genera correctamente este resumen.

3. Estos datos también se utilizan para probar el objeto WeatherStation.

:CommsController ‘WeatherStation WeatherData

request (report)

-

acknowledge ()

report ()

A

Y

summarise ()

------_----..-l

send (report)
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reply (report)
> T ]
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Por supuesto, se ha simplificado el diagrama de secuencia en la Figura 23.5 para que no
muestre las excepciones. Un escenario completo de pruebas deberia tener también éstas en
cuenta y asegurar que los objetos manejan correctamente las excepciones.

Pruebas de rendimiento

Una vez que un sistema se ha integrado completamente, es posible probar las propiedades
emergentes del sistema {véase el Capitulo 2) tales como rendimiento y fiabilidad. Las prue-
bas de rendimiento tienen que disefiarse para asegurar que el sistema pueda procesar su car-
ga esperada. Esto normalmente implica planificar una serie de pruebas en las que la carga se
va incrementando regularmente hasta que el rendimiento del sistema se hace inaceptable.

Como sucede con otros tipos de pruebas, las pruebas de rendimiento se ocupan tanto de
demostrar que el sisterna satisface sus requerimientos como de descubrir problemas y defec-
tos en el sistemna. Para probar si los requerimientos de rendimiento son atcanzados, usted tie-
ne que construir un perfil operacional. Un perfil operacionai es un conjunto de pruebas que
reflejan la combinacion real de trabajo que deberia ser manejada por ¢l sistema. Por lo tanto,
si el 90% de las transacciones en un sistema son de tipo A, un 5% de tipo B y el resto de ti-
pos C, D y E, entonces usted tiene que disefiar el perfil operacional para que la amplia ma-
yoria de las pruebas sean de tipo A. En caso contrario, no se tendrd un test preciso del rendi-
miento operacional del sistema. Se analizan los perfiles operacionales y su uso en las pruebas
de fiabilidad en el Capitulo 24.

Por supuesto, esta aproximacién no es necesariamente la mejor aproximacion para las
pruebas de defectos. Tal y como se explica mas adelante, la experiencia ha demostrado que
una forma efectiva de descubrir defectos es disefiar pruebas alrededor de los limites del sis-
tema. Las pruebas de rendimiento implican estresar el sistema {de ahi el nombre de pruebas
de estrés) realizando demandas que estdn fuera de los limites del disefio del software.

Por ejemplo, un sistema de procesamiento de transacciones puede disefiarse para procesar
hasta 300 transacciones por segundo; un sistema operativo puede disefiarse para gestionar has-
ta 1.000 terminales distintas. Las pruebas de estrés van realizando pruebas acercdndose a la
méxima carga del disefio del sistema hasta que el sistema falla. Este tipo de pruebas tienen
dos funciones:

1. Prueba el comportamiento de fallo de ejecucion del sistema. Pueden aparecer circuns-
tancias a través de una combinacion no esperada de eventos en donde la carga sobre €l
sistema supere la maxima carga anticipada. En estas circunstancias, es importante que
un fallo de ejecucion del sistema no provoque la corrupcidn de los datos o pérdidas in-
esperadas de servicios de los usuarios. Las pruebas de estrés verifican que las sobre-
cargas en el sistema provocan «fallos ligeros» en lugar de colapsarlo bajo su carga.

2. Sobrecargan el sistema y pueden provocar que se manifiesten defectos que normal-
mente no serian descubiertos. Aunque se puede argumentar que estos defectos es im-
probable que causen fallos de funcionamiento en un use normal, puede haber combi-
naciones inusuales de circunstancias normales que las pruebas de estrés pueden
reproducir.

Las pruebas de estrés son particularmente relevantes para los sistemas distribuidos basa-
dos en una red de procesadores. Estos sistemas exhiben a menudo una degradacion grave
cuando son sobrecargados. La red se satura con datos de coordinacion que los diferentes pro-
cesos deben intercambiar, de forma que los procesos son cada vez mds lentos a medida que
esperan los datos requeridos de otros procesos.
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23.2

Figura 23.6

La interfaz del objeto
de la estacién
meteorologica.

Pruebas de componentes

Las pruebas de componentes (a menudo denominadas pruebas de unidad) son el proceso de
probar los componentes individuales en el sistema. Este es un proceso de pruebas de defec-
tos. por lo que su objetivo es encontrar defectos en estos componentes. Tal y como se indico
en la introduccién, para la mayoria de los sistemas, los desarrolladores de componentes son
los responsables de las pruebas de componentes.

Existen diferentes tipos de componentes que pueden probarse en esta etapa:

Funciones individuales o métodos dentro de un objeto.

Clases de objetos que tienen varios atributos y métodos.

Componentes compuestos formados por diferentes objetos o funciones. Estos com-
ponentes compuestos tienen una interfaz definida que se utiliza para acceder a su fun-
cionalidad.

W

Las funciones 0 métedos individuales son el tipo mas simple de componente y sus prue-
bas son un conjunto de lfamadas a estas rutinas con diferentes parametros de entrada. Pueden
utilizarse las aproximaciones para disefiar los casos de prueba, descritos en la seccion si-
guiente, y para disefiar las pruebas de las funciones o métodos.

Cuando se estan probando clases de objetos, deberfan disefiar las pruebas para proporcio-
nar cobertura para todas las caracteristicas del objeto. Por lo tanto, las pruebas de clases de
objetos deberian incluir:

1. Las pruebas aisladas de todas las operaciones asociadas con el objeto.

2. Laasignacion y consulta de todos los atributos asociados con el objeto.

3. Ejecutar el objeto en todos sus posibles estados. Esto significa que deben simularse to-
dos los eventos que provocan un cambio de estado en ¢l objeto.

Consideremos, por ejemplo, la estacién meteorologica del Capitulo 14 cuya interfaz se
muestra en la Figura 23.6. Esta s6lo tiene un Gnico atributo, el cual es su identificador. Este
€4 una constante que se asigna cuando la estacion meteorologica se instala. Por lo tanto, sdlo
$€ necesita una prueba que compruebe si dicho atributo ha sido actnalizado. Se necesita defi-
nir casos de prueba para reportWeather, calibrate, test, startup y shutdown. En teoria, de-
berian probarse los métodos de forma independiente, pero, en algunos casos, son necesarias
algunas secuencias de pruebas. Por ejemplo, para probar shutdown se necesita haber ejecu-
tado el método startup.

Para probar los estados de 1a estacién meteoroldgica, se utiliza un modelo de estados tal
y como se muestra en la Figura 14.14. Mediante este modelo, se pueden identificar se-
cuencias de transiciones de estados que tienen que ser probadas y definir secuencias de
eventos para forzar estas transiciones. En principio, deberia probarse cada posible secuen-

WeatherStation

identifier

reportWeather ()
calibrate {instruments)
test ()

startup (instruments)
shutdown (instruments)
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Figura 23.7
Pruebas
de interfaces

cia de transicion de estados, aunque en la practica esto puede suponer un coste demasiado
elevado. Ejemplos de secuencias de estados que deberian probarse en la estacion meteoro-
l6gica son los siguientes:

Shutdown — Waiting — Shutdown
Waiting — Calibrating — Testing — Transmitting — Waiting
Waiting — Collecting — Waiting — Summarising — Transmitting — Waiting

Si se utiliza herencia, se hace més dificil disefiar las pruebas de clases de objetos. Siempre
que una superclase proporcione operaciones que son heredadas por varias subclases, todas es-
tas subclases deberian ser probadas con todas las operaciones heredadas. La razén de esto es
que la operacién heredada puede hacer suposiciones sobre otras operaciones v atributos, que
pueden haber cambiado cuando se han heredado. Del misme modo, cuando una operacién de
una superclase es sobrescrita, entonces la nueva operacién debe ser probada.

La nocién de clases de equivalencia, expuesta en la Seccidén 23.3.2, también puede apli-
carse a clases de objetos. Las pruebas que pertenecen a la misma clase de equivalencia po-
drian ser aquellas que utilizan los mismos atributos de los objetos. Por lo tanto, deberian iden-
tificarse clases de equivalencia que inicializan, acceden y actualizan todos los atributos de las
clases de objetos.

Pruebhas de interfaces

Muchos componentes en un sistema no son simples funciones u objetos, sino que son com-
ponentes compuestos formados por varios objetos que interactian. Tal y como se explicé en
el Capitulo 19, que trataba la ingenieria del software basada en componentes, se accede a las
funcionalidades de estos componentes a través de sus interfaces definidas. Entonces las prue-
bas de estos componentes se ocupan principalmente de probar que la interfaz del componen-
te se comporta de acuerdo con su especificacion.

L.a Figura 23.7 ilustra este proceso de pruebas de interfaces. Supongamos que los compo-
nentes A, B y C se han integrado para formar un componente mds grande o subsistema. Los
casos de prucba no se aplican a componentes individuales, sino a la interfaz del componente
compuesto gue se ha creado combinando estos componentes.

Las pruebas de interfaces son particularmente importantes para el desarrollo orientado a
objetos y basado en componentes. Los objetos y componentes se definen por sus interfaces y

Casos
de prueba

Y

A
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pueden ser reutilizados en combinacidn con otros componentes en sisternas diferentes. Los
errores de interfaz en el componente compuesto no pueden detectarse probando los objetos
individuales o componentes. Los errores en el componente compuesto pueden surgir debido
a Interacciones entre sus partes.

Existen diferentes tipos de interfaces entre los componentes del programa y, consecuente-
mente, distintos tipos de errores de interfaces que pueden producirse:

. Interfaces de pardmetros. Son interfaces en las que los datos, o algunas veces refe-
rencias a funciones, se pasan de un componente a otro en forma de pardmetros.

2. Interfaces de memoria compartida. Son interfaces en las que un blogue de memoria
se comparte entre los componentes. Los datos se colocan en la memoria por un sub-
sistema y son recuperados desde aqui por otros subsistemas.

3. Inmerfaces procedurales. Son interfaces en las que un componente encapsula un con-
Junto de procedimientos que pueden ser llamados por otros componentes. Los objetos
y los componentes reutilizables tienen esta forma de interfaz.

4. Interfaces de paso de mensajes. Son interfaces en las que un componente solicita un
servicio de otro componente mediante el paso de un mensaje. Un mensaje de retorno
incluye los resultados de la ejecucidn del servicio. Algunos sistemas orientados a ob-
jetos tienen esta forma de interfaz, asi como los sistemas cliente-servidor.

Los errores de mterfaces son una de las formas mas comunes de error en sistemas com-
plejos (Lutz, 1993). Estos errores se clasifican en tres clases:

L. Mal uso de la interfaz. Un componente llama a otro componente y comete un error
en la utilizacion de su interfaz. Este tipo de errores es particularmente comiin con
interfaces de parametros en donde los parametros pueden ser de tipo erréneo, pue-
den pasarse en el orden eguivocado o puede pasarse un niimero erréneo de pardme-
tros.

2. No comprension de fa interfaz. El componente que realiza la llamada no comprende
la especificacion de la interfaz del componente al que llama, y hace suposiciones so-
bre el comportamiento del componente invocado. El componente invocado no se com-
porta como era de esperar y esto provoca un comportamiento inesperado en el com-
ponente que hace la llamada. Por ejemplo, puede llamarse a una rutina de bisqueda
binaria con un vector no ordenado para realizar la bisqueda. En este caso, la bisque-
da podria fallar.

3. Errores temporales. Se producen en sistemas de tiempo real que utilizan una memo-
ria compartida o una interfaz de paso de mensajes. El productor de los datos y el con-
sumidor de dichos datos pueden operar a diferentes velocidades. A menos que se ten-
ga un cuidado particular en el disefio de la interfaz, el consumidor puede acceder a
informacién no actualizada debido a que el productor de la informacién no ha actua-
lizado la informacién de la interfaz compartida.

Las pruebas para encontrar defectos en las interfaces son dificiles debido a que algunos de-
fectos de las interfaces sélo se pueden manifestar en condiciones inusuaies. Por ejemplo, con-
sideremos un objeto gue implementa una cola con una estructura de datos de longitud fija. Un
objeto que llama puede suponer ue la cola estd implementada como una estructura de datos
infinita y puede no comprobar el desbordamiento de la cola cuando se introduce un elemen-
to. Esta condicion sdlo se puede detectar durante las pruebas disefiando casos de prueba que
fuerzan un desbordamiento de la cola y hacen que dicho desbordamiento no daiie el compor-
tamiento del objeto de alguna forma detectable.
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Puede surgir un problema adicional debido a las interacciones entre los defectos en dis-
tintos modulos u objetos. Los defectos en un objeto sélo pueden ser detectados cuando algin
otro objeto se comporta de forma inesperada. Por ejemplo, un objeto puede llamar a algiin otro
objeto para recibir algiin sesvicio y puede suponer que la respuesta es correcta. Si existe un
malentendido sobre el valor calculado, el valor devuelto puede ser vilido pero incomrecto. Esto
sOlo se manifestard cuando algin calculo posterior sea erroneo.

He aqui algunas guias generales para las pruebas de interfaz:

1. Examinar el codigo a probar y listar explicitamente cada llamada a un componente ex-
terno. Disefiar un conjunto de pruebas en donde los valores de los pardmetros para los
componentes externos estdn en los extremos de sus rangos. Es bastante probable que
estos valores extremos revelen inconsistencias en la interfaz.

2. Enlos lugares en los que se pasan punteros a través de una interfaz, siempre probar la
interfaz con pardmetros de punteros nulos.

3. Cuando se llama a un componente a través de una interfaz procedural, disefar
pruebas que hagan que el componente falle. Realizar suposiciones de fallos de eje-
cucidn erréneas s una de las malas interpretaciones de especificacién mas comu-
nes.

4. Utilizar las pruebas de estrés, 1al y como se indicd en la seccidn previa, en los siste-
mas de paso de mensajes. Disefiar pruebas que generen muchos mds mensajes de los
que probablemente ocurran en la prictica. Los problemas temporales se detectan de
esta manera.

5. Cuando varios componentes interactian a través de memoria compartida, disenar
pruebas que varian el orden en el que se activan estos componentes. Estas pruebas pue-
den revelar suposiciones implicitas hechas por el programador sobre el orden en el que
los datos compartidos son producidos y consumidos.

Las técnicas de validacion estiticas son a menudo més rentables que las pruebas para des-
cubrir errores de interfaz. Un lenguaje fuertemente tipado como Java permite que muchos
errores de interfaz sean detectados por el compilador. Si se utiliza un lenguaje débilmente ti-
pado, tal como C, un analizador estitico como LINT (véase el Capitulo 22) puede detectar
errores de interfaz. Las inspecciones de programas se pueden centrar en las interfaces de los
componentes y durante el proceso de inspeccién se pueden hacer preguntas sobre el compor-
tamiento asumido de las interfaces.

Diseiio de casos de prueba

El disefio de casos de prueba es una parte de las pruebas de componentes y sistemas en las
que se disefian los casos de prueba (entradas y salidas esperadas) para probar el sistema, El
objetivo del proceso de disefio de casos de prueba es crear un conjunto de casos de prueba que
sean efectivos descubriendo defectos en los programas y muestren que el sistema satisface sus
requerimientos.

Para disefiar un caso de prueba, se selecciona una caracteristica del sistema o componen-
te que se estd probando. A continuacidn, se selecciona un conjunto de entradas que ejecutan
dicha caracteristica, documenta las salidas esperadas o rangos de salida y, donde sea posi-
ble, se disefia una prueba automatizada que prueba que las salidas reales y esperadas son las
mismas.
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Existen varias aproximaciones que pueden seguirse para disefiar casos de prueba:

{.  Pruebas basadas en requerimientos. en donde los casos de prueba se disefian para
probar los requerimientos del sistema. Esta aproximacién se utiliza principalmen-
te en la ctapa de pruebas del sistema, ya que los requerimientos del sistema nor-
malmente se implementan por varios componentes. Para cada requerimiento, se
identifica casos de prueba que puedan demostrar que el sistema satisface ese re-
querimiento.

2. Pruebas de particiones, en donde se identifican particiones de entrada y salida y se di-
sefian pruebas para que el sistema ejecute entradas de todas las particiones y genere
salidas en todas las particiones. Las particiones son grupos de datos que tienen carac-
teristicas comunes, como todos los nimeros negativos, todos los nombres con menos
de 30 caracteres, todos los eventos provocados por la eleccion de opciones en un
mend, y asi sucesivamente.

3. Pruebas estructurales, en donde se utiliza el conocimiento de la estructura del pro-
grama para disefar pruebas que ejecuten todas las partes del programa. Esencialmen-
te, cuando se prueba un programa, deberia intentarse ejecutar cada sentencia al menos
una vez. Las pruebas estructurales ayudan a identificar casos de prueba que pueden ha-
cer esto posible.

En general, cuando se disefien casos de prueba, se deberia comenzar con las pruebas de
més alto nivel a partir de los requerimientos y a continuacién, de forma progresiva, afiadir
pruebas mds detalladas utilizando pruebas estructurales y pruebas de particiones.

Pruebas basadas en requerimientos

Un principio general de ingenieria de requerimientos, expuesto en el Capitulo 6, es que los
requerimientos deberian poder probarse. Es decir, los requerimientos deberian ser escritos de
tal forma que se pueda disenar una prueba para que un observador pueda comprobar que los
requerimientos se satisfacen. Las pruebas basadas en requerimientos, por lo tanto, son una
aproximacién sistematica al disefio de casos de prueba en donde el usuario considera cada re-
querimiento y deriva un conjunto de pruebas para cada uno de ellos. Las pruebas basadas en
requerimientos son pruebas de validacion en lugar de pruebas de defectos —el usuario inten-
ta demostrar que el sistema ha implementado sus requerimientos de forma adecuada.

Por ejemplo, consideremos los requerimientos para el sistema LIBSYS introducidos en el
Capitulo 6.

1. Elusuario serd capaz de buscar en un conjunto inicial de bases de datos o bien selec-
cionar un subconjunio de éstas.

2. El sistema proporcionard vistas apropiadas para que el usuario pueda leer los docu-
mentos almacenados.

3. Cada peticién deberfa contener un tinico identificador (ORDER _1D) que el usuario de-
bera ser capaz de copiar en el drea de peticiones de aimacenamiento permanente.

Posibles pruebas para el primero de estos requerimientos, suponiendo que se ha probado
una funciéon de bisqueda, son:

« Iniciar bisquedas de usuario para elementos de los que se conoce que estdn presentes y
para elementos que se sabe quano estan presentes. en las que el conjunto de bases de da-
tos incluye una base de datos.
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» [niciar busquedas de usuario para elementos de los que se sabe que estan presentes y para
elementos de los que se sabe que no estdn presentes, en las que el conjunto de bases de
datos incluye dos base de datos.

* Iniciar bisquedas de usuario para elementos de los que se sabe que estén presentes y para
elementos de los que se sabe que no estin presentes, en las que el conjunto de bases de
datos incluye mds de dos base de datos.

* Seleccionar una base de datos del conjunto de bases de datos e iniciar bisquedas de usua-
rio para elementos que se sabe que estan presentes y para elementos de los que se sabe
que no estin presentes.

* Seleccionar mds de una base de datos del conjunto de bases de datos e iniciar biisquedas
de usuario para elementos de los que se sabe que estdn presentes y para elementos de los
que se sabe que no estin presentes.

Se puede ver a partir de esto que las pruebas de un requerimiento no significan escribir sélo
una anica prueba. Normalmente tienen que escribirse varias pruebas para asegurar que cubre
por complete el requerimiento.

Las pruebas para los otros requerimientos en el sistema LIBSYS pueden desarrollarse de
la misma forma. Para el segundo requerimiento, deberian escribirse pruebas para que pudie-
ran ser procesados por el sistema documentos entregados de todos los tipos y comprobar que
s¢ visualizan adecuadamente. El tercer requerimiento es ms sencitlo. Para probarlo, se simula
la emisién de varios pedidos y entonces se comprueba que el identificador del pedido estd pre-
sente en la confirmacién que recibe el usuario y que s finica en cada caso.

Pruebas de particiones

Los datos de entrada y los resultados de salida de un programa normalmente se pueden agru-
par en vanas clases diferentes que tienen caracteristicas comunes tales como niimeros positi-
vos, nimeros negativos y selecciones de menus. Los programas normalmente se comportan
de una forma similar para todos los miembros de una clase. Es decir, si se prueba un progra-
ma que realiza algiin cdlculo y requiere dos nimeros positivos, entonces se esperaria que el
programa se comportase de la misma forma para todos los nimeros positivos.

Debido a este comportamiento equivalente, estas clases se denominan a menudo particio-
nes de equivalencia o dominios (Bezier, 1990). Una aproximacion sistemdrica al disefio de ca-
sos de prueba se basa en identificar todas las particiones para un sistema o compenente. Los
casos de prueba se disefian para que las entradas o salidas pertenezcan a estas particiones. Las
pruebas de particiones pueden utilizarse para disefar casos de prueba tanto para sistemas
cOmo para componentes.

En la Figura 23.8, cada particién de equivalencia se muestra como una elipse. Las parti-
ciones de equivalencia son conjuntos de datos en donde todos los miembros de los conjuntos
deberian ser procesados de forma equivalente, Las particiones de equivalencia de salida son
resultados del programa que tienen caracteristicas comunes, por lo que pueden considerarse
como una clase diferente. También se identifican particiones en donde las entradas estan fue-
ra de otras particiones que se han elegido. Estas prueban si el programa maneja entradas in-
vélidas de forma correcta. Las entradas vilidas e invdlidas también forman particiones de
equivalencia.

Una vez que se ha identificado un conjunto de particiones, pueden clegirse casos de prue-
ba de cada una de estas particiones. Una buena prictica para la seleccién de casos de prueba
es elegir casos de prueba en los limites de las particiones junto con casos de prueba cercanos
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Figura 23.8
Particiones
de equivalencia.

Figura 23.9
Ejemplos

de particiones
de equivalencia.

[Eh@Ke

Entradas invalidas Entradas validas

Salidas

al punto medio de la particién. La razén de esto es que los disefiadores y programadores tien-
den a considerar valores tipicos de entradas cuando desarrollan un sistema. Estos se prueban
eligiendo el punto medio de la particion. Los valores limite son a menudo atipicos (por ejem-
plo, el cero puede comportarse de forma diferente del resto de los mimeros no negativos), por
lo que los diseiiadores los pasan por alto. Los fallos de ejecucidn de los programas a menudo
ocurren cuando se procesan estos valores atipicos.

Se identifican particiones usando la especificacién del programa o documentacién del
usuario y, a partir de la propia experiencia, se predice qué clases de valores de entrada es pro-
bable que detecten errores. Por ejemplo, supongamos que una especificacion de un programa
indica que el programa acepta de 4 a 8 entradas que son enteros de cinco digitos mayores de
10.000. La Figura 23.9 muestra las particiones para csta situacion asi como los posibles va-
lores de prueba de entrada.

3 LR
4 7 10
Menor que 4 Entre 4y 10 Mas de 10

Numero de valores de entrada

9.999 10.0000
10.000 50.000 99.999

S

Menor que 10.000 Entre 10.000 y 99.999 Mas de 99.999

Vaiores de entrada
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Para ilustrar la derivacion de casos de prueba, se usa la especificacidn de un componente
de bisqueda mostrado en la Figura 23.10. Este componente busca un elemento concreto (Key)
en una secuencia de elementos. Devuelve la posicion de dicho elemento en la secuencia. Se
ha especificado esto de forma abstracta definiendo precondiciones, que son ciertas antes de
que se llame al componente, y postcondiciones, que son ciertas después de su ejecucion.

Las precondiciones indican que la rutina de biisqueda sélo funcionari con secuencias que
no sean vacias. La postcondicion indica que la variable Found toma un valor si el elemento
buscado estd en la secuencia. La posicién del elemento buscado es el indice L. El valor del in-
dice no estd defimido si el elemento no est en la secuencia.

A parttr de esta especificacion, pueden identificarse dos particiones de equivalencia:

1.

Entradas en las que el elemento a buscar es un miembro de la secuencia (Found =
true).

2. Entradas en las que el elemento a buscar no es un miembro de la secuencia (Found =

false).

Cuando se estan probando problemas con secuencias, vectores o listas, existen varias re-
comendaciones que a menudo son Gtiles para disefiar casos de prueba:

1.

Probar el software con secuencias que tienen sélo un valor. Los programadores pien-
san de forma natural que las secuencias estdn formadas por varios valores, y algunas
veces consideran esta suposicion en sus programas. Como consecuencia, el programa
puede no funcionar correctamente cuando se le presenta una secuencia con un tinico
valor.

Utilizar vanas secuencias de diferentes tamaiios en distintas pruebas. Esto disminuye
la probabilidad de que un programa con defectos produzca accidentalmente una sali-
da correcta debido a alguna caracteristica ocasional en ka entrada.

Generar pruebas para acceder al primer elemento, al elemento central y al dltimo ele-
mento de la secuencia. Esta aproximacién pone de manifiesto problemas en los limi-
tes de la particion.

A partir de estas recomendaciones, se pueden identificar dos particiones de equivalencia mas:

1.

La secuencia de entrada tiene un tinico valor.

2. El nimero de elementos de la secuencia de entrada es mayor que 1.

A continuacion, se identifican particiones adicionales combinando estas particiones; por
ejemplo, la particion en la que el niimero de elementos en la secuencia es mayor que | y el ele-

precadwre Search (Key : ELEM ; T: SEQ of ELEM ;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition

— [a secuencia tiene al menos un elemento
TFIRST <= TLAST

Past-condition

Especificacidn
de una rutina
de blsqueda.

— el elemento se encuentra y es referendado por L
(Found and T (1) = Key)

— el elemento no ests en [a secuenda
{ mot Found and
not (exists i, TARST >=i <= TLAST, T (i) = Key ))
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Figura 23.11
Particiones de
equivalencia para la
rutina de busqueda.

23.3.3

Figura 23.12
Pruebas estructurales.

Single value In sequence

Single value Not in sequence

Maore than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

17 17 true, 1

17 0 false, 7
17,29, 21,23 17 tnue, 1
41,18, 9,31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23,29, 33, 38 25 false, 1?

mento no pertenece 4 la secuencia. La Figura 23.11 muestra las particiones que se han identi-
ficado para probar el componente de biisqueda.

Un conjunto de posibles casos de prueba basados en estas particiones se muestran también
en la Figura 23.11. Si el elemento a buscar no esti en la secuencia. el valor de L. no estd defi-
ntdo («?7»). La recomendacion de que deberian utilizarse diferentes secuencias de distintos
tamaiios se ha aplicado en estos casos de prueba.

El conjunto de valores de entrada utilizados para probar la rutina de bisqueda no es ex-
haustivo. La rutina puede fallar si la secuencia de entrada incluye los elementos 1, 2, 3 y 4.
Sin embargo, es razonable suponer que si la prueba falla al detectar defectos cuando uno de
los miembros de la clase es procesado, ningln otro miembro de dicha clase identificara de-
fectos. Por supuesto, los defectos todavia pueden existir. Algunas particiones de equivalencia
pueden no haber sido identificadas, los errores pueden haberse cometido en la identificacién
de las particiones de equivalencia o los datos de las pruebas pueden no haberse preparado co-
rrectamente,

Pruebas estructurales

Las pruebas estructurales (Figura 23.12) son una aproximacion al disefio de casos de prueba
en donde las pruebas se derivan a partir del conocimiento de la estructura e implementacién
del software. Esta aproximacion se denomina a veces pruebas de «caja blanca», de «caja de
cristal» o de «caja transparente» para distinguirlas de las pruebas de caja negra.

La comprension del algoritmo utilizado en un componente puede ayudar a identificar par-
ticiones adicionales y casos de prueba. Para ilustrar esto. se ha implementado la especifica-

Datos de prueba {

1

Pruebas Deriva en

Cddigo del
componente  f

Salidas
de prueba
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Figura 23.13
Clases de
equivalencia de |a
busqueda binaria.

Figura 23.14
Implementacién Java
de la rutina de
busqueda binaria.

Limites de la clase de equivalencia

l by d l

Elementos < Mid Elementos > Mid

Punto medio

cion de la rutina de bidsqueda (Figura 23.10) como una rutina de bisqueda binaria (Figu-
ra 23.14). Por supueslto, ésta tiene precondiciones mds estrictas. La secuencia se implementa
como un vecior, este vector debe estar ordenado y el valor del limite inferior del vector debe
ser menor que el valor del limite superior.

Examinando el cédigo de la rutina de biisqueda, puede verse que la blisqueda binaria im-
plica dividir el espacio de bisqueda en tres partes. Cada una de eslas partes constituye una
particion de equivalencia (Figura 23.13). A continuacion, se disefian los casos de prueba en
los que el elemento buscado se sitda en los limites de cada una de estas particiones.

class BinSearch {

// Este es un encapsulamiento de una fundén de blsqueda binaria que toma un
/{ vector de objetos ordenados y una clave y devuelve un objeto con 2 atributos:
// index - el valor del vector index

// found - un valor booleano que indica si key estd en el vector.

// Se devuelve un objeto puesto que en Java no es posible pasar tipos bdsicos por
/{ referencia a una fundén y por lo tanto devolver dos valores.

// El valor de key es ~1 si no se encuentra el elemento.

public static void search (int key, int [] elemArray, Result r)

{
1. int bottom =0 ;
2, int top = elemArray.length -1 ;
intmid ;
3 rfound = false ;
4, rindex = -1 ;
5, while ( bottom <= top )
{
6. mid = (top + bottom) / 2 ;
7 if (efemArray [mid] == key)
{
8. rindex =mid ;
9. rfound =true ;
10. return ;
) /7 i part
else
{
1L if (elemArray [mid] < key)
12, bottom = mid + 1 ;
else
13. top = mid -1 ;
}
} //while loop
14. }// bisqueda
} //BinSearch
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Figura 23.15 Casos
de prueba para la
rutina de busqueda.

23.3.4

17 17 true, 1

17 0 false, 77
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31,41, 45 45 true, 7
17,18, 21, 23, 29, 38, 41 23 true, 4
17,18, 21, 23, 29, 33, 38 21 true, 3
12,18, 21, 23, 32 23 true, 4
21,23, 29, 33, 38 25 false, 1?

Esto da lugar a un conjunto de casos de prueba revisados para la rutina de buisqueda, tal y
como se muestra en la Figura 23.15. Observe que se ha modificado el vector de entrada para
que esté ordenado de forma ascendente y se han afiadido pruebas adicionales en las que el ele-
mento a buscar es adyacente a la posicion central del vector.

Pruebas de caminos

Las pruebas de caminos son una estrategia de pruebas estructurales cuyo objetivo s probar
cada camino de ejecucién independiente en un componenie ¢ programa. Si cada camino in-
dependiente, entonces todas las sentencias en el componente deben haberse ejecutado al me-
nos una vez. Ademds, todas las sentencias condicionales comprueban para los casos verda-
dero y falso. En un proceso de desarrollo orientado a objetos, pueden utilizarse las pruebas de
caminos cuando se prueban los métodos asociados a los objetos.

El niimero de caminos en un programa es normalmente proporcional a su tamafio. Puesto
que los médulos se integran en sistemas, no es factible utilizar técnicas de pruebas estructu-
rales. Por lo tanto, las técnicas de pruebas de caminos son principalmente utilizadas durante
las pruebas de componentes.

Las pruebas de caminos no prueban todas las posibles combinaciones de todos los cami-
nos en el programa. Para cualquier componente distinto de un componente trivial sin bucles,
éste es un objetivo imposible. Existe un mimero infinito de posibles combinaciones de cami-
nos en los programas con bucles. Incluso cuando todas las sentencias del programa se han eje-
cutado al menos una vez, los defectos del programa todavia pueden aparecer cuando se com-
binan determinados caminos.

El punto de partida de una prueba de caminos es un grafo de flujo del programa. Este es
un modelo del esqueleto de todos los caminos en el programa. Un grafo de flujo consiste en
nodos que representan decisiones y aristas que muestran el flujo de control, El grafo de flujo
se construye reemplazando las sentencias de control del programa por diagramas equivalen-
tes. 51 no hay sentencias goto en un programa, es un proceso sencillo derivar su grafo de flu-
jo. Cada rama en una sentencia condicional (if-then-else o case) se muesira como un camino
independiente. Una flecha que vuelve al nodo de la condicién denota un bucle. Se ha dibuja-
do el grafo de flujo para el método de biisqueda binaria en ta Figura 23.16. Para establecer la
correspondencia entre éste y el programa de la Figura 23.14 de forma mds obvia, s¢ ha mos-
trado cada sentencia como un nodo separado en el que cada nimero de nodo se corresponde
con el mismo nimero de linea en el programa.

El objetivo de la prueba de caminos es asegurar que cada camino independiente en el progra-
ma se ejecuta al menos una vez. Un camino independiente del programa es aquel que recorre al
menos una nueva arisia en el grafo de flujo. En términos de programas, esto significa ejecutar una
0 mds condiciones nuevas. Se deben ejecutar las ramas verdadera v falsa de todas las condiciones.
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El grafo de flujo para el procedimiento de biisqueda binaria se muestra en la Figura 23.16,
en donde cada nodo representa una linea en el programa con una sentencia ejecutable. Por lo
tanto, realizando trazas del flujo se puede ver que los caminos en el grafo de flujo de biisqueda
binaria son:

1,2.3,4,5,6,7,8,9,10, 14
1,2.3,4,5, 14

1,2,3,4,5,6,7,11, 12,5, ...
1,2,3,4,6,7,2, 11, 13,5, ...

Si se ejecutan todos estos caminos, podemos estar seguros de que cada sentencia en el mé-
todo ha sido ejecutada al menos una vez y que cada rama ha sido ejecutada para las condi-
ciones verdadera y falsa.

Se puede encontrar el niimero de caminos independientes en un programa catculando la
complejidad ciclomdtica (McCabe, 1976) del grafo de flujo del programa. Para programas sin
sentencias goto, el valor de la complejidad ciclomdtica es uno mds que el nimero de condi-
ciones en el programa. Una condicién simple es una expresion logica sin coneclores «and» u

O

8]

o o
(WAL AR W

bottom > top

5

)

L\ elemArray [mid] != key

elemArray [mid] > key

R‘ while bottom <= top
4

WA NAS

elemAsray

[mid] = key elemArray [mid]|< key

T

Grafo de flujo para \
una rutina de
busqueda binaria.
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23.4

«or», Si el programa incluye condiciones compuestas, que son expresiones logicas con co-
nectores «and» u «or», entonces cuenta el nimero de condiciones simples en las condiciones
compuestas cuando calcula la complejidad ciclomatica.

Por lo tanto, si hay seis sentencias if y un bucle while y todas las expresiones condiciona-
les son simples, la complejidad ciclomartica es 8. Si una expresion condicional es una expre-
sién compuesta tal como «if A and B or C», entonces esto se cuenta como tres condiciones
simples. La complejidad ciclomitica, por lo tanto, es 10. La complejidad ciciomitica del al-
goritmo de blsqueda binaria (Figura 23.14) es 4 debido a que hay tres condiciones simples
en las lineas 5. 7y 11.

Después de descubrir el mimero de caminos independientes en el codigo calculando 1a
complejidad ciclomatica, se necesita disefar casos de prueba para ejecutar cada uno de estos
caminos. El ndmero minimo de casos de prueba necesarios para probar todos los caminos del
programa es igual a la complejidad ciclomadtica.

Ef disefio de casos de prueba es sencillo en el caso de la rutina de bisqueda binaria. Sin
embargo, cuando los programas tienen una estructura de ramas compleja, puede ser dificil pre-
decir c6mo deberd procesarse cualquier caso de prueba particular. En estos casos, para des-
cubrir el perfil de ejecucion del programa, puede utilizarse un analizador dindmico de pro-
gramas.

Los analizadores dindmicos de programas son herramientas de pruebas que trabajan con-
juntamente con los compiladores. Durante la compilacion, estos analizadores afiaden ins-
trucciones adicionales al cédigo generado. Estos cuentan el nimero de veces que una sen-
tencia ha sido ejecutada en un programa. Después de que el programa se ha ejecutado, puede
imprimirse un perfil de ejecucién. Este muestra qué partes del programa han sido y no han
sido ejecutadas utilizando casos de prueba particulares. Por lo tanto, este perfil de ejecucion
revela secciones del programa no probadas.

Automatizacidon de las pruebas

Las pruebas son una fase cara y laboriosa del proceso del software. Como consecuencia, las
herramientas de prueba estaban entre las primeras herramientas de sofiware a desarrollar. Ac-
tualmente, estas herramientas ofrecen una serie de facilidades y su uso puede reducir signifi-
cativamente los costes de las pruebas.

Ya se ha mostrado una aproximacion para la automatizacidn de las pruebas (Mosley y Po-
sey, 2002) en las que se utiliza un marco de trabajo de pruebas tal como JUnit (Massol y Hus-
ted, 2003} para pruebas de regresion. JUnit es un conjunto de clases Java que el usuario ex-
tiende para crear un entorno de pruebas automatizado. Cada prueba individual se implementa
coma un objeto y un ejecutador de pruebas ejecuta todas las pruebas. Las pruebas en si mis-
mas deben escribirse de forma gue indiquen si el sistema probado funciona como se esperaba.

Un banco de pruebas del software es un conjunto integrado de herramientas para soportar
el proceso de pruebas. Ademads de a los marcos de irabajo de pruebas que soportan la ejecu-
cién automdtica de las pruebas, un banco de trabajo puede incluir herramientas para simular
otras partes del sistema y generar datos de prueba de dicho sistema. La Figura 23.17 muestra
algunas de las herramientas que podrian incluirse en un banco de trabajo de pruebas de este
tipo:

1. Gestor de pruebas. Gestiona la ejecucion de las pruebas del programa. El gestor de
pruebas mantiene un registro de los datos de las pruebas, resultados esperados y faci-
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Figura 23.17
Un banco de trabajo
de pruebas.

lidades del programa que han sido probadas. Los marcos de trabajo automatizados ta-
les como JUnit son ejemplos de gestores de pruebas.

Generador de datos de prueba. Genera datos de prueba para el programa a probar.
Esto puede conseguirse seleccionando datos de una base de datos o utilizando patro-
nes para generar datos gleatorios de forma correcta,

Ordculo. Genera predicciones de resultados esperados de pruebas. Los oraculos pue-
den ser versiones previas del programa o sistemas de prototipos. Las pruebas back-to-
back (estudiadas en el Capitulo 17) implican ejecutar el oraculo y el programa a pro-
bar en paralelo. Las diferencias entre sus salidas son resaltadas.

Comparador de ficheros. Compara los resultados de las pruebas del programa con los
resultados de pruebas previos e informa de las diferencias entre ellos. Los compara-
dores se utilizan en pruebas de regresion en las que se comparan los resultados de eje-
cutar diferentes versiones. Cuando se utilizan pruebas automatizadas, los comparado-
res pueden ser llamados desde las mismas pruebas.

Generador de informes. Proporciona la definicién de informes y facilidades de gene-
racién para los resultados de las pruebas.

Analizador dindmico. Afade codigo a un programa para contar el niimero de veces que
se ha ejecutado cada sentencia. Después de las pruebas, se genera un perfil de ejecu-
cidn que muestra cudntas veces se ha ejecutado cada sentencia del programa.
Simulador. Se pueden utilizar diferentes tipos de simutadores. Los simuladores de la
maquina objetivo simulan la maquina sobre la que se ejecuta el programa. Los simu-
ladores de interfaces de usuarto son programas conducidos por scripts que simulan
miiltiples interacciones de usuarios simultaneas. Utilizar simuladores para Entrada/Sa-
lida implica que el comportamiento temporal de la secuencia de las transacciones es
repetible.

Cuando se utilizan para pruebas de grandes sistemas, las herramientas tienen que confi-
gurarse ¥y adaptarse para el sistema especifico que se estd probando. Por ejemplo:

Generadar de
datos de prueba

Y

Especificacion

QOraculo

Cdodigo Administrado Datos 1
fuente de pruebas de prueba ;

Analizador Programa
dindmico en prueba

Y

Resultado de Predicciones
la prueba de la prueba
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Generador los resuitados
de informes & de la prueba
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Pueden tener que afadirse nuevas herramientas para probar caracteristicas especificas
de la aplicacion, y algunas herramientas existentes de prueba pueden no ser necesa-
rias.

Pueden tener que escribirse scripts para simuladores de interfaz de usuario y definir
patrones para generadores de datos de pruebas. Los formatos de los informes también
pueden tener que ser definidos.

Pueden tener que prepararse manualmente los conjuntos de resultados esperados de
las pruebas si no hay versiones previas de los programas disponibles que sirvan como
ordculo,

Pueden tener que escribirse comparadores de ficheros de propdsito especial que in-
cluyan conocimiento de ta estructura de los resultados de las pruebas sobre ficheros.

Normalmente, se necesita una cantidad significativa de esfuerzo y tiempo para crear un
banco de trabajo de pruebas adecuado. Por lo tanto, los bancos de trabajo de pruebas com-
pletos, tal y como se muestra en la Figura 23.17, s6lo se utilizan cuando se desarroilan siste-
mas grandes. Para estos sistemas, los costes totales de las pruebas pueden llegar al 50% del
total de los costes de desarrollo, por lo que es rentable invertir en herramientas CASE de alta
calidad para soportar las pruebas. Sin embargo, debido a que diferentes tipos de sistemas re-
quieren distintos tipos de soportes para las pruebas, puede que no estén disponibles herra-
mientas de pruebas comerciales. Rankin (Rankin, 2002) analiza una situacién como ésta en
IBM y describe el diseiio del sistema de soporte de pruebas que desarrollaron para un servi-

dor de comercio electrénico.

el

Las pruebas sélo pueden demostrar la presencia de errores en un programa, No pueden demostrar que no hay
mas defectos.

Las pruebas de componentes son responsabilidad del desarrollador del componente. Un equipo indepen-
diente de pruebas lleva a cabo normalmente las pruebas del sistema.

Las pruebas de integraci6n son la actividad inicial de las pruebas del sistema en las que se prueban compo-
nentes integrados para detectar defectos. Las pruebas de entregas estan relacionadas con las pruebas de las
entregas al cliente y deberfan validar que el sistema a entregar satisface sus requerimientos.

Cuando se prueban {os sistemas, deberia intentarse «romper» el sistema usando la experiencia y recomen-
daciones para elegir los tipos de casos de prueba que han sido efectivos descubriendo defectos en otros sis-
temas.

Las pruebas de interfaz intentan descubrir defectos en las interfaces de los componentes compuestos. Los de-
fectos de las interfaces pueden ocurrir debido a errores cometidos en la fectura de la especificacién, malen-
tendidos en las especificaciones o errores o suposiciones temporales invalidas.

Las particiones de equivalencia son una forma de derivar casos de prueba. Dependen de encontrar particio-
nes en los conjuntos de datos de entrada y salida y ejecutar el programa con valores de estas particiones. A
menudo, el valor que sea mas probable que conduzca a una prueba con éxito es un valor en los limites de una
particién,



516 CAPITULO 23 ® Prusbas del software

B Las pruebas estructurales hacen referencia a analizar el programa para determinar caminos a través de él y
usar este anélisis como ayuda para la seleccién de los casos de prueba.

M La automatizacion de las pruebas reduce los costes de las pruebas apoyando al proceso de pruebas con va-
rias herramientas software.

LECTURAS ADICIONALES NI .. - | | &Y

How to Break Software: A Practical Guide to Testing. Este es un libro practico mas que teérico sobre las pruebas del
software, en et que el autor presenta un conjunto de recomendaciones basadas en la experiencia sobre el disefio de
las pruebas, que probablemente sean efectivas en el descubrimiento de defectos del sistema. (). A. Whittaker, 2002,
Addison-Wesley.)

«Software Testing and Verification». Este nimero especial del /BM Systems fournal contiene varios articulos sobre
pruebas, incluyendo una buena revision, articulos sobre métricas de pruebas y automatizacién de pruebas. [/1BM
Systems Jounal, 41(1), enero de 2002.]

Testing Object-oriented Systems: Models, Patterns and Tools. Este libro voluminoso proporciona un estudio com-
pleto sobre las pruebas orientadas a objetos. Su volumen indica que no deberia ser el primer libro que se leyese so-
bre pruebas orientadas a objetos (la mayoria de los libros sobre desarrollo orientado a objetos tienen un capitulo
de pruebas), pero claramente es el libro definitivo sobre pruebas orientadas a objetos. (R. V. Binder, 1999, Addison-
Wesley.)

«How to design practical test cases». Un articulo sobre cémo disefar casos de prueba por un autor de una compa-
fnia japonesa que tiene fama de entregar software con muy pocos defectos. [T. Yamaura, IEEE Software, 15(6), No-
viembre 1998.]

EJERCICIOS T NS s  DPTUENN P T A

23.1 Explique por qué las pruebas sélo pueden detectar la presencia de errores, no su ausencia.

23.2 Compare una integracién y pruebas ascendente y descendente comentando sus ventajas y desventajas
para pruebas arquitecténicas, para mostrar una version del sistema a los usuarios y para la implementa-
cion practica y observacidn de las pruebas. Explique por qué la integracion de la mayoria de los sistemas
grandes, en la practica, tiene gque usar una mezcla de aproximaciones ascendentes y descendentes.

23.3 iQué son las pruebas de regresidn? Explique cdmo el uso de pruebas automaticas y un marco de trabajo
de pruebas tal como JUnit simplifica las pruebas de regresién.

23.4 Escriba un escenario que podria utilizarse como base para derivar pruebas del sistema de estacion meteo-
roldgica que fue utilizado como ejemplo en el Capitulo 14.

23.5 Utilizando el diagrama de secuencia de la Figura 8.14 como escenario, proponga pruebas para la peticién
de elementos electronicos en el sistema LIBSYS.



CAPITULO 23 ® Ejercicios 517

23.6

23.7

23.8

23.9

23.10

iCuéles son los problemas que se plantean al desarrollar pruebas de rendimiento para un sistema de base
de datos distribuida tal como el sistema LIBSYS?

Expligue por qué las pruebas de interfaz son necesarias incluso cuando los componentes individuales han
sido validados extensamente a través de las pruebas de componentes e inspecciones de programas.

Utilizando la aproximacién presentada aqui para pruebas de objetos, disefie casos de prueba para probar
los estados del horno microondas cuyo modelo de estados se define en la Figura 8.5.

Se le ha solicitado que pruebe un método denominado catWhiteSpace en un objeto Paragraph que, den-
tro de un parrafo, reemplace secuencias de caracteres en blanco con un dnico caracter en blanco. Identifi-
que particiones de pruebas para este ejemplo y derive un conjunto de pruebas para el método catWhi-
teSpace.

indique tres situaciones en las que las pruebas de todos los caminos independientes en un programa pue-
den no detectar errores en el programa.



Validacion
de sistemas criticos

Objetivos

El objetivo de este capitulo es estudiar las técnicas de verificacidn
y validacién utilizadas en el desarrollo de sistemas criticos.
Cuando haya leido este capitulo:

B comprenderd cdmo puede medirse la fiabilidad del software y
c¢6mo {os modelos de crecimiento de fiabilidad pueden
utilizarse para predecir cudndo sera alcanzado un nivel
requerido de fiabilidad;

@ comprendera los principios de los argumentos de seguridad y
cdmo éstos pueden utilizarse junto con otros métodos de V& V
para garantizar la seguridad de un sistema;

B comprendera los problemas de garantizar la proteccion de un
sistema;

B habra sido introducido en casos de seguridad que presentan
argumentos y evidencias de la seguridad de un sistema.

Contenidos

24.1 Validacién de la fiabilidad

24.2 Garantia de la seguridad

24.3 Valoracion de {a proteccién

24.4 Argumentos de confiabilidad y de seguridad
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CAPITULO 24 ® Validacion de sistemas criticos

Obviamente, la verificacion y validacion de un sistema critico tiene mucho en comiin con la
validacidn de cualquier otro sistema. Los procesos de V & V deberian demostrar que el sis-
tema satisface su especificacién y que los servicios del sistema y su comportamiento estan
acordes con los requerimientos del cliente. Sin embargo, para sistemas criticos, en los que se
requiere un alto nivel de confiabilidad, son necesarias pruebas y andlisis adicionales para pro-
porcionar la evidencia de que el sistema es confiable. Existen dos razones de por qué esto es
necesario:

1. Costes de fallos de ejecucion. Los costes y las consecuencias de los fallos de eje-
cucion de los sistemas criticos son potencialmente mucho mds grandes que para los
sistemas no criticos. Pueden reducirse los riesgos de los fallos del sistema invir-
tiendo mds en verificacion y validacién del sistema. Normalmente es mas econd-
mico encontrar y eliminar defectos antes de que e} sistema sea entregado que pa-
gar por los consecuentes costes de accidentes o de un mal funcionamiento de los
servicios del sistema,

2. Validacion de los atributos de confiabilidad. Puede tenerse que hacer una demostra-
cién formal a los clientes de que el sistema satisface sus requerimientos especificados
de confiabilidad (disponibilidad. fiabilidad, seguridad y proteccién). Para evaluar es-
tas caracteristicas de confiabilidad se requieren actividades especificas de V & V ex-
plicadas mas adelante en este capitulo. En algunos casos, los reguladores externos, ta-
les como autoridades de aviacién nacionales, pueden tener que certificar que el sistema
es seguro antes de que éste sea desplegado. Para obtener esta certificacion, pueden te-
nerse que diseriar y llevar a cabo procedimientos de V & V especiales que recogen la
evidencia sobre la confiabilidad del sistema.

Por estas razones, los costes de V & V para sistemas criticos son generalmente mucho ma-
yores que para otras clases de sistemas. Es norma! que el proceso de V & V consuma mads del
50% de los costes totales de desarrollo para sistemas de software criticos. Por supuesto, este
coste estd justificado si se quiere evitar un fallo de ejecucion del sistema que sea caro. Por
ejemplo, en 1996 un sistema de software de mision critica en el cohete Ariane 5 fall6 y se des-
truyeron varios satélites. Las pérdidas se cifraron en cientos de millones de ddlares. La sub-
siguiente investigacion descubrié que las deficiencias en el sistema de V & V fueron parcial-
mente responsables de este fallo.

Aunque el proceso de validacidn de sistemas criticos se centra principalmente en la vali-
dacion del sistema, otras validaciones relacionadas deberian verificar que los procesos de des-
arrollo del sistema definidos han sido seguidoes. Tal y como se explica en los Capitulos 27 y
28, la calidad del sistema se ve afectada por la calidad de los procesos utilizados para des-
arrollar el sistema. En resumen, buenos procesos caonducen a buenos sistemas. Por lo tanto,
para producir sistemas confiables, es necesario asegurarse de que se ha seguido un proceso de
desarrollo robusto.

Esta garantia del proceso es una parte inherente de los estdndares ISO 9000 para la ges-
tidn de la calidad, descritos brevemente en el Capitulo 27. Estos estdndares requieren do-
cumentar los procesos que se utilizan y las actividades asociadas para asegurar que se han
seguido estos procesos. Esto normalmente requiere la generacion de registros del proceso,
tales como formularios firmados, que certifiquen la finalizacién de las actividades del pro-
ceso y comprobaciones de calidad del producto. Los estidndares 1SO 9000 especifican qué
salidas tangibles del proceso deberian producirse y quién es el responsable de producirlas.
En la Seccidén 24.2.2 s¢ proporciona un ejemplo de un registro para un proceso de analisis
de contingencias.



24.1 W Validacién de la fiabilidad 521

24 1

Figura 24.1

Ef proceso

de medicién
de la fiabilidad.

Validacion de la fiahilidad

Tal y como se explicé en el Capitulo 9, se han desarroliado varias métricas para especificar
los requerimientos de fiabilidad de un sistema. Para validar que el sistema satisface estos re-
querimientos, tiene que medirse la fiabilidad del sistema tal y como lo ve un usuario tipico
del mismo.

El proceso de medir la fiabilidad de un sistema se ilustra en la Figura 24.1. Este proceso
comprende cuatro etapas:

1. Se comienza estudiando los sistemas existentes del mismo tipo para establecer un per-
fil operacional. Un perfil operacional identifica las clases de entradas al sistema y la
probabilidad de que estas entradas ocurran en un uso normal.

2. A continuacion, se canstruye un conjunto de datos de prueba que reflejan el pertil ope-
racional. Esto significa que se crean datos de prueba con la misma distribucion de pro-
babilidad que los datos de prueba para los sistemas que se han estudiado. Normal-
mente, se utiliza un generador de datos de prueba para soportar este proceso.

3. Se prueba el sistema utilizando estos datos y se contabiliza el nimero y tipo de fallos
que ocurren. Los instantes en los que ocurren estos fallos también son registrados. Tal
y como se indicé en el Capitulo 9, las unidades de tiempo que se elijan deberian ser
adecuadas para la métrica de fiabilidad utilizada.

4. Después de que se ha observado un mimero de fallos significativos estadisticamente,

se puede calcular la fiabilidad del software y obtener el valor adecuado de la métrica
de fiabilidad.

Esta aproximacién se denomina a menudo priebas estadisticas. El objetivo de las pruebas
estadisticas es evaluar la fiabilidad del sistema. Esto contrasta con la prueba de defectos, des-
crita en el Capitulo 23, en la gue el objetivo es descubrir defectos del sistema. Prowell y otros
(Prowell et al., 1999) proporcionan una buena descripcién de las pruebas estadisticas en su [i-
bro sobre ingenieria del software de Sala Limpia.

Esta aproximacion para {a medicién de la fiabilidad es atractiva conceptualmente, pero no
es facil de aplicar en la prictica. Las principales dificultades que presenta son:

1. Incertidumbre del perfil operacional. Los perfiles operacionales basados en la expe-
riencia con otros sistemas pueden no ser un reflejo exacto del uso real del sistema.

2. Costes elevados de generaciin de datos de prueba. Puede ser muy care generar el gran
volumen de datos requeridos en un perfil operacional a menos que el proceso pueda
ser automatizado completamente.

3. Incertidumbre estadistica cuando se especifica una fiabilidad alta. Se tiene que pro-
vocar un nimero de fallos significativo estadisticamente para permitir mediciones de
fiabilidad exactas. Cuando el software ya es fiable, ocurren relativamente pocos fallos
y es dificil provocar nuevos fallos.

Desarrollar un perfil operacional preciso es ciertamente posible para algunos tipos de sis-
temas, como los sistemas de telecomunicaciones, que tienen un patrén de uso estandarizado.

tdentificar Preparar un Aplicar Calcular
perfiles ™| conjunto de datos pruebas |a fiabilidad
operacionales & de prueba g al sistema
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Sin embargo, para otros tipos de sistemas, hay muchos usuarios diferentes que tienen su pro-
pia forma de utilizar el sistema. Tal y como se explicé en el Capitulo 3, distintos usuarios pue-
den obtener impresiones de fiabilidad completamente diferentes debido a que utilizan el sis-
tema de forma distinta.

Con diferencia, la mejor forma de generar los grandes conjuntos de datos requeridos para
la medicion de ta fiabilidad es utilizar un generador de datos de prueba que pueda generar au-
tomdticamente las entradas correspondientes al perfil operacional. Sin embargo, normalmen-
te no ¢s posible automatizar la produccién de todos los datos de prueba para sistemas inter-
activos debido a que las entradas son a menudo una respuesta a las salidas del sistema. Los
conjuntos de datos para estos sistemas tienen que generarse manualmente, con sus corres-

pondientes costes mas elevados. Incluso en los casos en los que es posible automatizar com-

pletamente el proceso, escribir los comandos para el generador de los datos de prueba puede
llevar una cantidad de tiempo significativa.

La incertidumbre estadistica es un problema general en la medicidn de la fiabilidad de un
sistema. Para llevar a cabo predicciones precisas de fiabilidad, se necesita hacer algo més que
simplemente provocar un tnico fallo de ejecucién del sistema. Tiene que generarse un nimero
razonablemente grande y significativo estadisticamente para tener la seguridad de que su me-
dicion de la fiabilidad es precisa. Cuanto mds se disminuya el nimero de defectos en un sis-
tema, mds dificil resultard medir la efectividad de las técnicas de minimizacién de defectos.
Si se especifican niveles muy altos de fiabilidad, a menudo no es practico generar suficientes
fallos del sistema para comprobar estas especificaciones,

Perfiles operacionales

El perfil operacional del software refleja como se utilizara éste en la prictica. Consiste en
la especificacion de clases de entradas y la probabilidad de su ocurrencia. Cuando un nue-
vo sistema software reemplaza a un sistema existente manual o automatizado, es razona-
blemente ficil evaluar el patrén de uso probable del nuevo software. Este deberia corres-
ponderse con el uso del sistema existente, con algunas adiciones para las nuevas
funcionalidades que (presumiblemente) se incluyen en el nuevo software. Por ejemplo,
puede especificarse un perfil operacional para sistemas de centralitas de telecomunicacio-
nes debido a que las compaiifas de telecomunicaciones conocen los patrones de llamadas
que estos sisiemas tienen que manejar.

Tipicamente, el perfil operacional es 1al que las entradas que tienen la probabilidad m4s
alta de ser generadas se concentran en un pequefio mimero de clases, tal y como se muestra a
la izquierda de la Figura 24.2. Hay un mimero extremadamente grande de clases en las que
las entradas son altamente improbables, pero no imposibles, Estas se muestran a la derecha
de la Figura 24.2. Los puntos suspensivos (...) significan que existen mas de estas entradas in-
usuales que no se muestran.

Musa (Musa, 1993; Musa, 1998) sugiere recomendaciones para el desarrollo de perfiles
operacionales. Este autor trabajé en ingenieria de sistemas de telecomunicaciones, y exis-
te una gran tradicidén en la recoleccién de datos de uso en este dominio. Como consecuen-
cia, el proceso de desarrollo de perfiles operacionales es relativamente sencillo. Para un sis-
tema que requiere alrededor de 15 personas-aio de esfuerzo de desarrollo, se desarrollé un
perfil operacional de alrededor de 1 persona-mes. En otros casos, el esfuerzo de la genera-
cién del perfil operacional fue mayor (2-3 personas-afio), pero el coste disminuyd a lo lar-
go de varias entregas del sistema. Musa se dio cuenta de que su compafiia (una compaifiia
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Figura 24.2
Un perfil operacional.

24.1.2
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de telecomunicaciones) tuvo un beneficio de al menos diez veces la inversion requerida para
desarrollar un perfil operacional.

Sin embargo, cuando un sistema software es nuevo e innovador, es dificil anticipar cémo
serd utilizado y, por lo tanto, generar un perfit operacional preciso. Muchos usuarios diferen-
tes con distintas expectativas, conocimientos y experiencia pueden usar el nuevo sistema. No
existen bases de datos historicas de uso. Estos usuarios pueden hacer uso de los sistemas en
formas que no han sido anticipadas por los desarrolladores del sistema.

El problema se complica mds debido a que los perfiles operacionales pueden cambiar con-
forme se utiliza el sistema. A medida que los usuarios comprenden el nuevo sistema y confi-
an més en €1, a menudo lo utilizan de forma mas sofisticada. Debido a estas dificultades, Ham-
let (Hamlet, 1992) sugiere que a veces es imposible desarrollar un perfil operacional fiable.
Si el usuario no estd seguro de que su perfil operacional es correcto, entonces no puede con-
fiar en la exactitud de sus mediciones de fiabilidad.

Prediccion de la fiabilidad

Durante la validacidn del software, los gestores tienen que dedicar esfuerzo a las pruebas del
sistema. Puesto que el proceso de pruebas es muy caro, es importante dejar de probar tan pron-
to como sea posible y no «sobreprobar» el sistema. Las pruebas pueden detenerse cuando se
alcance ¢l nivel requerido de fiabilidad del sistema. Algunas veces, por supuesto, Jas predic-
ciones de fiabilidad pueden revelar que el nivel requerido de fiabilidad nunca conseguira. En
este caso, el gestor debe tomar decisiones dificiles sobre la reescritura de parte del software
o renegociar el contrato del sistema.

Un modelo de crecimiento de fiabilidad es un modelo de como cambia la fiabilidad del sis-
tema a lo largo del tiempo durante el proceso de pruebas. A medida que se descubren los fa-
llos del sistema, los defectos subyacentes que provocan estos fallos son reparados para que la
fiabilidad del sisterna mejore durante las pruebas y depuracidn. Para predecir la fiabilidad, el
modelo conceptual de crecimiento de la fiabilidad debe ser traducido a un modelo matemati-
co. Aqui no se entra en este nivel de detalle, sino que simplemente se plantea el principio del
crecimiento de la fiabilidad.

Existen varios modelos de crecimiento de la fiabilidad que han sido derivados de experi-
mentos de fiabilidad en varios dominios de aplicacion diferentes. Tal y como Kan (Kan,
2003) pone de manifiesto, la mayoria de estos modelos son exponenciales, en los que la fia-
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Figura 24.3
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bilidad crece rapidamente y los defectos son descubiertos y eliminados (véase la Figura 24.5).
A continuacion, el crecimiento se estabiliza y alcanza un nivel a medida que cada vez menos
defectos son descubiertos y eliminados en posteriores etapas de pruebas.

El modelo mds simple que ilustra el concepto de crecimiento de la fiabilidad es un mode-
lo de funciones por pasos (Jelinski vy Moranda, 1972). La fiabilidad crece de forma constan-
te cada vez que un defecto (o un conjunto de defectos) es descubierto y reparado (Figu-
ra 24.3) y una nueva version del software es creada. Este modelo supone que las reparaciones
del software se implementan siempre correctamente, de forma que el niimero de defectos del
software y fallos asociados decrece en cada nueva version del sistema. A medida que tienen
lugar las reparaciones, la tasa de ocurrencia de fallos del sofiware (ROCOF) deber{a por tan-
to reducirse, tal y como se muestra en la Figura 24.3. Note que los periodos de tiempo sobre
el eje horizontal reflejan el tiempo entre entregas del sistema para pruebas, de forma que nor-
malmente tienen longitudes diferentes,

En la prictica, sin embargo, los defectos del software no siempre se reparan durante la de-
puracién, y cuando se cambia un programa, a menudo se introducen nuevos defectos. La pro-
babilidad de ocurrencia de estos defectos puede ser mayor que la probabilidad de ocurrencia
del defecto que ha sido reparado. Por lo tanto, la fiabilidad del sistema a veces puede empeo-
rar en una nueva entrega en lugar de mejorar.

El modelo simple de crecimiento de la fiabilidad de pasos iguales también supone que to-
dos los defectos contribuyen de igual forma a la fiabilidad y que cada reparacion de los de-
fectos contribuye en la misma medida al crecimiento de la fiabilidad. Sin embargo, no todos
los defectos son igualmente probables. Reparar los defectos mas comunes contribuye mas al
crecimiento de la fiabilidad que reparar defectos que sélo ocurren de forma ocasional. Al
usuario también le gustaria encontrar estos defectos probables cada vez en el proceso de
pruebas. de forma que la fiabilidad puede crecer mas que en etapas posteriores, en las que los
defectos menos probables son descubiertos.

Modelos posteriores, como los sugeridos por Littlewood y Verrall (Littlewood y Verrall,
1973) tienen en cuenta estos problemas introduciendo un elemento aleatorio en la mejora del
crecimiento de la fiabilidad conseguida por una reparacion del software. Asi, cada reparacién
no da como resultado una cantidad igual de la mejora de la fiabilidad, sino que varia depen-
diendo de la perturbacion aleatoria (Figura 24.4).
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El modelo de Littlewood y Verrall permite un crecimiento de la fiabilidad negativo cuan-
do una reparacion del software introduce errores adicionales. También modela el hecho de que
a medida que los defectos son reparados, el promedio de mejora en cuanto a fiabilidad por re-
paracion disminuye. La razén de esto es que los defectos mas probables probablemente sean
descubiertos pronto en el proceso de pruebas. La reparacion de estos defectos contribuye mas
al crecimiento de la fiabilidad.

Los modelos anteriores son modelos discretos que reflejan el crecimiento de la fiabilidad de
forma incremental, Cuando se entrega para las pruebas una nueva version del software con de-
fectos reparados deberia haber una menor tasa de ocurrencia de fallos que en la version previa.
Sin embargo, para predecir la fiabilidad que deberd alcanzarse después de una determinada can-
tidad de pruebas, son necesarios modelos matemdticos continuos. Se han propuesto y compa-
rado muchos modelos, derivados de diferentes dominios de aplicacién (Littlewood, 1990).

De forma sencilla, puede predecirse la fiabilidad comparando los datos medidos de la fia-
bilidad con un modelo de fiabilidad conocido. A continuacidn, se extrapola el modeto al ni-
vel requerido de fiabilidad y se observa cudndo se alcanzara dicho nivel (Figura 24.5). Por lo
tanto, las pruebas y la depuracion deben continuar hasta ese momento.
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24.2

La prediccién de la fiabilidad del sistema a partir de un modelo de crecimiento de fiabili-
dad tiene dos ventajas principales:

1. Planificacion de las pruebas. Dado el calendario actual de pruebas, puede predecirse
cudndo se completardn las pruebas. Si el final de las pruebas tiene lugar después de
la fecha planificada de entrega del sistema, entonces puede tenerse que desplegar re-
cursos adicionales para probar y depurar, y asi acelerar la tasa de crecimiento de fia-
bilidad.

2. Negoclaciones con el cliente. Algunas veces el modelo de fiabilidad muestra que el
crecimiento de la fiabilidad es muy lento y que se requiere una cantidad de esfuerzo
de pruebas desproporcionada para obtener un beneficio relativamente pequefio. Pue-
de merecer la pena renegociar los requerimientos de fiabilidad con el cliente. De for-
ma alternativa, puede ocurrir que el modelo prediga que la fiabilidad requerida pro-
bablemente nunca serd alcanzada. En este caso, se tendrian que renegociar con el
cliente los requerimientos de la fiabilidad del sistema,

Se ha simplificado aqu{ el modelado del crecimiento de la fiabilidad para proporcionarle
un conocimiento basico del concepto. Si se desea utilizar estos modelos, se tiene que profun-
dizar mds y comprender las matematicas subyacentes a estos modelos y sus problemas pric-
ticos. Littlewood y Musa (Littlewood, 1990; Abdel-Ghaly et al., 1986; Musa, 1998) han es-
crito extensamente sobre los modelos de crecimiento de la fiabilidad y Kan (Kan, 2003) tiene
un excelente resumen en su libro. Varios autores han descrito su experiencia prictica en ¢l uso
de los modelos de crecimiento de fiabilidad (Ehrlich e af., 1993; Schneidewind y Keller,
1992; Sheldon et al., 1992).

Garantia de la seguridad

El proceso de la garantia de la seguridad y la validacion de la fiabilidad tienen objetivos di-
ferentes. Se puede especificar la fiabilidad de forma cuantitativa utilizando alguna métrica y
a continuacion medir ia fiabilidad del sistema completo. Dentro de los limites del proceso de
medicion, se sabe si ha alcanzado el nivel requerido de fiabilidad. La seguridad, sin embargo,
no puede especificarse de forma cuantitativa y, por lo tanto, no puede medirse cuando se prue-
ba un sistema.

Por lo tanto, la garantia de la seguridad esta relacionada con establecer un nivel de con-
fianza en el sistema que podria variar desde «muy bajo» hasta «muy aito», Esta es una cues-
tion de juicio profesional basado en evidencias sobre el sistema, su entomo y su proceso de
desarrollo. En muchos casos, esta confianza estd basada parcialmente en la experiencia de la
organizacion que desarrolla el sistema. Si una compaiiia ha desarrollado previamente varios
sistemas de control que funcionan de forma segura, entonces es razonable suponer que ésta
continuara desarrollando sistemas seguros de este tipo.

Sin embargo, dicha evaluacién debe contrastarse con evidencias tangibles a partir del di-
sefio del sistema, los resultados de la V & V del sistema, y los procesos de desarrollo del sis-
tema que se han utilizado. Para algunos sistemas, esta evidencia tangible se consigue en un
caso de seguridad (véase la Seccién 24.4) que permite a un regulador externo llegar a una con-
clusién justificada de la confianza del desarrollador en la seguridad del sistema.

Los procesos de V & V para sistemas de seguridad criticos tienen mucho en comin con
los procesos comparables de cualquier otro sistema con altos requerimientos de fiabilidad.
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24.2.1

Se deben realizar unas pruebas generales para descubrir ¢l mayor nimero posible de de-
fectos, y cuando resulte apropiado, pueden utilizarse pruebas estadisticas para evaluar la
fiabilidad del sistema. Sin embargo, debido a las tasas de fallos ultrabajas requeridas en mu-
chos sistemas de seguridad criticos, las pruebas estadisticas no siempre proporcionan una
estimacion cuantitativa de la fiabilidad del sistema. Las pruebas simplemente proporcionan
alguna evidencia, que se usa con alguna otra evidencia como los resultados de las revisio-
nes y comprobaciones estaticas (véase el Capitulo 22), para hacer un juicio sobre la segu-
ridad del sistema,

Las revisiones extensas son esenciales durante un proceso de desarrollo orientado a la se-
guridad, para exponer el software a la gente, que lo vera desde diferentes perspectivas. Par-
nas y otros (Pamas et al., 1990) sugieren cinco tipos de revisiones que deberian ser obligato-
rias para los sistemas de seguridad criticos:

1. revisién para corregir la funcidn que se pretende;

2. revisidn para una estructura comprensible y mantenible;

3. revision para verificar que el algoritmo y el disefio de las estructuras de datos son con-
sistentes con el comportamiento especificado;

4. revisién de la consistencia del cddigo y del disefio del algoritmo y de las estructuras
de datos;

5. revision de la adecuacion de los casos de prueba del sistema.

Una suposicién que subyace al trabajo en la seguridad de los sistemas es que ¢l nimero de
defectos en el sistema que puede dar lugar a contingencias de seguridad criticas es significa-
tivamente menor que ¢l mimero total de defectos que pueden existir en el sistema. La garan-
tia de la seguridad puede concentrarse en estos defectos con potencial de contingencia. Si pue-
de demostrarse que estos defectos pueden no ocurrir o, si lo hacen, la contingencia asociada
no provocard un accidente, entonces el sistema es seguro. Esta es la base de los argumentos
de seguridad que se exponen en la siguiente seccion.

Argumentos de seguridad

Las demostracieones de correccién de los programas, tal y como se se explicéd en el Capitulo
22, han sido propuestas como una técnica de verificacién del software desde hace mds de
treinta afios. Las demostraciones formales de programas pueden ciertamente ser construidas
para pequefios sistemas. Sin embargo, las dificultades practicas para probar que un sistema
satisface sus especificaciones son tan grandes que pocas organizaciones consideran las prue-
bas de correccidn como uno de los costes. Sin embargo, para algunas aplicaciones criticas,
puede ser rentable desarrollar pruebas de correccitn para incrementar la confianza de que el
sistema satisfaga sus requerimientos de seguridad o proteccion. En concreto, éste es el caso
cuando la funcionalidad de seguridad critica puede ser aislada en subsistemas muy pequefios
que pueden ser especificados formalmente.

Aunque puede no ser rentable desarrollar demostraciones de correccion para la mayoria de
los sistemas, a veces es posible desarrollar argumentos de seguridad simples que demuestran
que ¢l programa satisface sus obligaciones de seguridad. En un argumento de seguridad, no
es necesario probar que la funcionalidad del programa es la que se especifico. S6lo es nece-
sario demostrar que la ejecucién del programa no conduce a un estado inseguro.

La técnica mas efectiva para demostrar la seguridad de un sistena es la demostracion por
contradiccion. Se comienza suponiendo que se estd en un estado no seguro, el cual ha sido
identificado por un andlisis de contingencias del sistema, y que puede ser alcanzado ejecu-
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Figura 24.6
Codigo

de suministro
de insulina.
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— The insulin dose to be delivered is a function of -
~ blood sugar level, the previous dose delivered and
— the time of delivery of the previous dose

currentDose = computeinsulin () ;
/7 Safety check—adjust cumentDose if necessary
// if-statement 1

if (previousDose == 0)
{
if (currentDose > 16)
currentDose = 16 ;

)
else

it (currentDose > (previousDose * 2) )
currentDose = previousDose * 2 ;

// il-statement 2

if { currentDose < minimumbDaose )
currentDose =0 ;

eise if { currentDose > maxDose )
currentDose = maxDose ;

administerinsulin (currentDose) ;

tando el programa. Se describe un predicado que define este estado no seguro. A continua-
cion, se analiza el codigo de forma sistemdtica y se muestra que, para todos los caminos del
programa gue conducen a ese estado, la condicion de terminacién de estos caminos contradi-
ce el predicado no seguro. Si éste es el caso, la suposicién inicial de un estado inseguro es in-
correcta. Si se repite esto para todas las contingencias identificadas, entonces el software es
Seguro.

Como ejemplo, consideremos el codigo de la Figura 24.6, que podria ser parte de la im-
plementacién del sistema de suministro de insulina. Desarrollar un argumento de seguridad
para este cédigo implica demostrar que la dosis de insulina administrada nunca es mayor que
algin nivel méaximo establecido para cada individuo diabético. Por lo tanto, no es necesaro
probar que el sistema suministra la dosis correcta, sino simplemente que nunca suministra una
sobredosis al paciente.

Para construir un argumento de seguridad, se identifica la precondicion para el estado 1n-
seguro que, en este caso, es que currentDose > maxDose. Después se demuestra que todos
los caminos del programa conducen a una contradiccién de esta asercion no segura. Si éste es
el caso, la condicidn no segura no puede ser cierta. Por lo tanto, el sistema es seguro. Se pue-
den estructurar y presentar los argumentos de seguridad de forma grafica tal y como se mues-
tra en la Figura 24.7.

Los argumentos de seguridad, segin se refleja en la citada figura, son mucho mds cortos
que las verificaciones formales de sistemas. Primero se identifica todos los posibles caminos
que conducen al estado potencialmente inseguro. Se trabaja hacia atras a partir de este esta-
do no seguro y se considera la dltima asignacion de todas las variables de estado en cada ca-
mino que conduce a é1. Pueden omitirse los calculos previos (como la sentencia if | en la Fi-
gura 24.7) en el argumento de seguridad. En este ejemplo, todo 1o que se necesita saber es el



24.2 M Garantia de la seguridad

529

Figura 24.7
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conjunto de posibles valores de currentDose inmediatamente antes de que ¢l método admi-

nisterlnsulin sea ejecutado.

En el argumento de seguridad mostrado en la Figura 24.7, existen tres posibles caminos en
el programa que conducen a la llamada al método administerinsulin, Queremos demostrar
que la cantidad de insulina suministrada nunca excede del valor de maxDose. Se consideran
todos los posibles caminos hasta administerinsulin:

1. Ninguna rama de la sentencia if 2 es ejecutada. Esto sdlo puede ocurrir si current-
Dose es mayor o igual que minimunDose y menor o igual que maxDose.

2. Larama then de la sentencia if 2 es ejecutada. En este caso, se asigna el valor de cero
a currentDose. Por lo tanto, su postcondicién es currentDose = Q.

3. Larama else-if de la sentencia if 2 es ejecutada. En este caso, se asigna el valor max-
Dose a currentDose. Por lo tanto, su postcondicion es currentDose = maxDose.

En los tres casos, las postcondiciones contradicen la precondicion no segura de que la do-
sis administrada es mayor que maxDose, por lo que el sistema es seguro.
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24.2.2 Garantia del proceso

En la introduccion de este capitulo ya se ha puesto de manifiesto la importancia de garantizar
la calidad del proceso de desarrollo del sistema. Esto es importante para todos los sistemas
criticos, pero es particularmente importante para los sistemnas de seguridad criticos. Existen
dos razones de esto:

1. Los accidenies son eventos raros en los sistemas criticos y puede ser pricticamente
imposible simularlos durante las pruebas de un sistema. No pueden realizarse pruebas
extensivas para replicar las condiciones que conducen a un accidente.

2. Los requerimientos de seguridad, tal y como se ha visto en el Capitulo 9, son a me-
nudo requerimientos «no deberia» que excluyen comportamientos del sistema no se-
guros. Es imposible demostrar de forma concluyente a través de las pruebas y otras ac-
tividades de validaciéon que estos requerimientos se han alcanzado.

El modelo de ciclo de vida para el desarrollo de sistemas de seguridad criticos (Capitulo 9,
Figura 9.7) deja claro que deberia prestarse atencion a la seguridad durante todas las etapas
del proceso del software. Esto significa que las actividades especificas de garantia de calidad
deben incluirse en el proceso. Estas incluyen:

1. Lacreacion de un sisterna de monitorizacidn y registro de contingencias que siga una
traza desde el andlisis preliminar de contingencias hasta las pruebas y la validacidn del
sistema.

2. La designacion de los ingenieros de seguridad del proyecto que tienen responsabili-
dad explicita en aspectos de seguridad del sistema.

3. Eluso frecuente de revisiones de seguridad durante todo el proceso de desarrollo,

4. La creacion de un sistema de certificacion de seguridad en el que la seguridad de los
componentes criticos es certificada formalmente.

5. El uso de un sistema de gestién de configuraciones muy detallado (véase el Capitulo
29), que se utiliza para hacer un seguimiento de toda la documentacion relacionada con
la seguridad y tenerla a mano junto con la documentacion técnica asociada. Es im-
portante tener procesos de validacion rigurosos si un fallo en la gestién de configura-
ciones implica que un sistema erréneo se entrega al cliente,

Para ilustrar la garantia de seguridad, se utiliza el proceso de andlisis de contingencias que
es una parte esencial del desarrolio de sistemas de seguridad criticos. El andlisis de contingen-
cias estd relacionado con la identificacién de contingencias, su probabilidad, y la probabilidad
de que estas contingencias provoquen un accidente. Si el proceso de desarrollo incluye una cla-
ra trazabilidad desde la identificacién de contingencias hasta el sistema mismo, entonces se pue-
de argumentar por qué estas contingencias no provocan accidentes. Esto puede complementar-
se con argumentos de seguridad, tal y como se explico en la Seccidn 24.2.1. Cuando se requiera
una certificacién externa antes de que el sistema sea utilizado (por ejemplo, en un avién), nor-
malmente una condicién de certificacién es que la trazabilidad pueda ser demostrada.

El documento central de seguridad es el registro de contingencias, en el que se documen-
tan y se lleva un seguimiento de las contingencias identificadas durante el proceso de especi-
ficacion. A continuacion, este registro de contingencias se utiliza en cada etapa del proceso
de desarrollo del software para evaluar cémo esa etapa del desarrollo ha tenido en cuenta las
contingencias. Un ejemplo simplificado de un registro de contingencias para el sistema de su-
ministro de insulina se muestra en la Figura 24.8. Este formulario documenta el proceso de
anélisis de contingencias y muestra los requerimientos de disefio que han sido generados du-
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Figura 24.8 Una
pagina simplificada
dei registro

de contingencias.

24.2.3

Registro de contingencias Pégina 4: Impresa 20.02.2003
Sisterna: Sistema de bomba de insulina Archivo: InsulinPump/Safety/HazardLog
Ingeniero de seguridad: james Brown Versidn del registro: 1/3

Contingenda identificado Sobredosis de insulina suministrada al paciente
Identificada por Jane Williams

Clase de criticalidad 1

Arbol de defectos identificado Sl Fecha 240199 Lugar Registrode

contingencias, Pagina 5
Creadores del drbol de defectos Jane Williams y Bill Smith
Arbol de defectos verificado SI  Fecha 28.01.99 Comprobador James Brown

1. El sistemna deberd incluir software de autoverificacién que probara el sistema del sensor, el re-
10j y el sisterna de insulina suministrada.

2. El software de autocomprobacién deberd ejecutarse una vez por minuto.

3. En caso de que el software de autoverificacion descubra un defecto en cualquiera de los com-
ponentes del sistema, se debers emitir una alarma sonora y el despliegue de la bomba indi-
car el nombre del componente donde el defecto se descubrié. El suministro de insulina se
suspendera.

4. £l sistema deberd incorporar un sistema de anulacion que le permita al usuario del sistema
madificar la dosis calculada de insulina que suministrar4 e sistema.

S, La cantidad a modificar no debe ser mas grande que un valor prestablecido seleccionado
cuando el sistema haya sido configurado por el personal médico.

rante este proceso. Estos requerimientos de disefio intentan asegurar que el sistema de con-
trol nunca puede entregar una sobredosis de insulina a un usuario de la bomba de insulina.

Tal y como se muestra en la Figura 24.8, los individuos que tengan las responsabilidades
en la seguridad deberian ser identificados explicitamente. Los proyectos de desarrollo de sis-
temas de seguridad criticos deberian tener siempre un ingeniero de seguridad del proyecto que
no esté implicado en ¢l desarrollo del sistema. La responsabilidad del ingeniero es asegurar
que se hagan y documenten las comprobaciones adecuadas de seguridad. Ef sistema puede
también requerir un asesor de seguridad independiente proveniente de una organizacion ex-
ternza, que informe directamente al cliente sobre cuestiones de seguridad.

En algunos domimos, los ingenieros del sistema que tienen responsabilidades de seguri-
dad deben ser certificados. En el Reino Unido, esto significa que tienen que haber sido acep-
tados como miembros de uno de los institutos de ingenieria {(civil, eléctrico, mecanico, etc.)
y tienen que ser ingenieros diplomados. Los ingenieros sin experiencia o poco cualificados
no deben tener responsabilidades de seguridad.

Esto no se aplica actualmente a los ingenieros del software, aunque ha habido un gran de-
bate sobre la concesion de licencias a ingenieros del software en vanos estados de los Esta-
dos Unidos (Knight y Leveson, 2002; Bagert, 20{)2). Sin embargo, los futuros estindares de
procesos para ¢l desarrollo de software de seguridad critico puede requerir que los ingenieros
de seguridad del proyecto sean ingenieros certificados formalmente con un nivel de entrena-
miento minimo definido.

Comprobaciones de seguridad en tiempo de ejecucidon

Se ha descrito la programacidén defensiva en el Capitulo 20, en la cual se afiaden sentencias
redundantes a un programa para monitorizar su funcionamiento y comprobar posibles defec-
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Figura 24.9
Administracién

de insulina con
comprobaciones en
tiempo de ejecucion.

24.3

static void administerinsulin { ) throws SafetyException {

int maxincrements = InsulinPump.maxDose / 8 ;
int increments = InsulinPump.cumentDose / 8 ;

// assert currentDose <m= InsulinPump.maxDose

if (iInsulinPump.cumrentDose > InsulinPump.maxDose)

e throw new SafetyException (Pump.doseHigh);

for (int im1; i<w increments; i++)
{
generateSignal  ;
# (i > maxincrements)
throw new SafetyException (Pumgp.incorrectincrements);
} /1 for loop

} //administerinsulin

tos en el sistema. La misma técnica puede utilizarse para menitorizar dindmicamente los sis-
temas de seguridad criticos. Puede afadirse cédigo de comprobacién del sistema que com-
pruebe una restriccién de seguridad. Este lanza una excepcion si se viola dicha restriccion. Las
restricciones de seguridad que deberian cumplirse siempre en puntos concretos de un pro-
grama pueden expresarse como aserciones. Las aserciones son predicados que describen con-
diciones que deberian cumplirse antes de que pueda ejecutarse la siguiente sentencia. En sis-
temas de seguridad criticos, las aserciones deberian generarse a partir de la especificacion de
seguridad. Las aserciones intentan asegurar el comportamiento seguro mas gue un comporta-
miento que esté de acuerdo con su especificacién.

Las aserciones pueden ser particularmente valiosas para garantizar la seguridad de las co-
municaciones entre los componentes del sistema. Por ejemplo, en el sistema de suministro de
insulina, la dosis de insulina administrada implica generar sefiales a la bomba de insulina para
suministrar un nimero especifico de incrementos de insulina (Figura 24.9). El ndmero de in-
crementos de insulina asociados con la dosis de insulina mdxima permitida puede ser precal-
culado e incluido como una asercion en el sistema.

Si ha habido un error en el cdlculo de currentDose, que es la variable de estado que al-
macena la cantidad de insulina a suministrar, o si este valor se ha dafiado de alguna manera,
entonces se detectard en este momento. No se suminisirard una dosis excesiva de insulina, ya
que la comprobacién en el método asegura que la bomba no suministrard mas de maxDaose.

A partir de las aserciones de seguridad que estdn incluidas como comentarios en el pro-
grama, puede generarse codigo para comprobar estas aserciones. Puede verse esto en la Fi-
gura 24.9, en donde la sentencia if después del comentario de ia asercién comprueba dicha
asercion. En principio, mucha de esta generacion de c6dige puede ser automatizada utilizan-
do un preprocesador de aserciones. Sin embargo, estas herramientas normalmente tienen que
ser escritas de forma especial y el cédigo de las aserciones se genera normalmente a mano.

Valoracion de la proteccidn

La valoracién de la proteccion de un sistema estd adquiriendo una importancia creciente ya
que cada vez més sistemas criticos estdn conectados a Internet y pueden ser accedidos por
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Figura 24.10
Ejemplos de
comprobaciones en
una lista

de camprobaciones
de proteccion.

cualquiera que tenga una conexién de red. Diariamente hay historias sobre ataques a sistemas
basados en web, y los virus y los gusanos se distribuyen normalmente a través de protocolos
de Internet. Todo esto significa que los procesos de verificacion y validacién para sistemas ba-
sados en web deben centrarse en la evaluacién de la proteccion. en la que se prueba la habi-
lidad del sistemna para resistir diferentes tipos de ataques; sin embargo, tal y como explica An-
derson (Anderson, 2001), este tipo de evaluacién de la seguridad es muy dificil de llevar a
cabo. Como consecuencia, los sistemas a menudo son desplegados con agujeros de seguridad
que los intrusos utilizan para conseguir el acceso o para dafiar a estos sistemas.

Fundamentalmente, la razén de por qué la proteccién es tan dificil de evaluar, es que los
requerimientos de proteccion, al igual que algunos requerimientos de seguridad, son requeri-
mientos «no deberia». Es decir, especifican qué es lo que no deberia ocurrir en lugar de ia fun-
cionalidad del sistema o del comportamiento requerido. Normalmente no es posible definir
este comportamiento no deseado como simples restricciones que pueden ser comprobadas por
el sistema,

Si hay recursos disponibles, siempre puede demostrar que un sistema satisface sus reque-
rimientos funcionales. Sin embargo, es imposible probar que un sistema no hace algo, por lo
que, independientemente de la cantidad de pruebas. pueden quedar vulnerabilidades de pro-
teccion en un sistema después de que éste haya sido desplegado. Incluso en los sistemas que
han sido utilizados durante muchos afios, un intruso ingenioso puede descubrir una nueva for-
ma de atacar e introducirse en 1o que se pensaba que era un sistema protegido. Por ejemplo,
el algoritmo RSA para encriptacién de datos que se pensé durante muchos afios que era se-
guro, fue violado en 1999,

Existen cuatro aproximaciones complementarias para comprobar la proteccion:

1. Validacion basada en la experiencia. En este caso, el sistema se analiza frente a ti-
pos de ataques conocidos por el equipo de validacion. Este tipo de validacion se lle-
va a cabo normalmente junto con la validacién basada en herramientas. Se pueden
crear listas de comprobacién de problemas de proteccion conocidos (Figura 24.10)
para ayudar al proceso. Esta aproximacion puede utilizar toda la documentacién del
sistema y podria ser parte de otras revisiones del sistema que comprucben errores u
Omisiones.

2. Validacion basada en herramientas. En este caso, varias herramientas de proteccion, ta-
les como comprobadores de contrasefias. se utilizan para analizar el sistema. Los com-

Lista de comprobadiones de seguridad

1. {Todos los ficheros creados por la aplicacién tienen los permisos de acceso adecuados? Los
permisos de acceso equivocades pueden llevar a que estos ficheros sean accedidos pos usua-
rios no autorizados.

2. (El sistema termina automaticamente las sesiones de usuario después de un pesiodo de in-
actividad? Las sesiones que se dejan activas pueden permitir accesos no autorizados a través
de una computadora inesperada.

3. Si el sistema se ha escrito en un lenguaje de programacion sin comprobacién de limites de
vectores, {existen situaciones en las que el desbordamiento del bifer pueda ser aprovecha-
do? El desbordamiento de los baferes puede permitir a los intrusos enviar cadenas de obdigo
al sistema y a continuacién ejecutarias.

4. Si se establecen contrasedias, {comprueba el sistema que las contrasefias son erobustas»? Las
contrasefias robustas consisten en mezdlas de letras, nimeros y signos de puntuacién, y no
son palabras normales de un diccionario. Son mucho mas dificiles de violar que las contrase-
fas simples.
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probadores de contrasefias detectan contrasefias inseguras tales como nombres comu-
nes o cadenas de letras consecutivas. Esta es realmente una extension de la validacién
basada en la experiencia, en donde la experiencia se incluye en la herramienta usada.

3. Equipos tigre. En este caso, se forma un equipo y se le da el objetivo de romper la pro-
teccion del sistema. Estos simulan ataques al sistema ¥y usan su ingenio para descubrir
nuevas formas de comprometer la seguridad del sistema. Esta aproximacién puede ser
muy efectiva, especialmente si los miembros del equipo tienen experiencia previa en
introducirse en los sistemas.

4. Verificacion formal. Un sistema puede ser verificado frente a una especificacion de
proteccion formal. Sin embargo, al igual que en otras 4reas, la verificacién formal para
la proteccién no se utiliza ampliamente.

Es muy dificil para los usuarios finales de un sistema verificar su proteccién. Como con-
secuencia, tal y como sefiala Gollmann (Gollmann, 1999), las organizaciones en Norteamé-
rica y en Europa han establecido conjuntos de criterios de evaluacién de proteccién que pue-
den ser comprobados por evaluadores especializados. Los proveedores de productos software
pueden someter sus productos para su evaluacion y certificacién frente a estos criterios.

Por lo tanto, si se liene un requerimiento para un nivel particular de proteccion, se puede
elegir un producto que haya sido validado para ese nivel. Sin embargo, muchos productos no
estan certificados en cuanto a la proteccidén o su certificacién se aplica a productos indivi-
duales, Cuando el sistema certificado se utiliza junto con otros sistemas no certificados, como
un software desarrollado localmente, entonces el nivel de proteccién del sistema completo no
se puede evaluar.

Argumentos de confiabilidad y de seguridad

Los argumentos de seguridad y, més genéricamente, los argumentos de confiabilidad son do-
cumentos estructurados que proporcionan argumentos detallados y evidencias de que un sis-
tema es seguro o de que se ha alcanzado un nivel requerido de confiabilidad. Para muchos ti-
pos de sistemas criticos, la produccién de un argumento de seguridad es un requerimiento
legal, y el argumento debe satisfacer alguna certificacion antes de que el sistema pueda ser
desplegado.

Los reguladores son creados por los gobiernos para asegurar que las industrias privadas no
se aprovechan de no seguir estindares nacionales para seguridad, proteccién, y asi sucesiva-
mente, Existen reguladores en muchas industrias diferentes. Por ejemplo, las lineas aéreas son
reguladas por las autoridades de la aviacién nacional tales como la FAA (en Estados Unidos)
y la CAA (en el Reino Unido). Los reguladores de las lineas ferroviarias existen para asegu-
rar la seguridad de las vias de tren, y los reguladores nucleares deben certificar la seguridad
de una planta nuclear antes de que sea puesta en marcha. En el sector bancario, los bancos na-
cionales sirven como reguladores, estableciendo procedimientos y précticas para reducir la
probabilidad de fraude y proteger a los clientes de los bancos de las pricticas bancarias arries-
gadas. A medida que los sistemas sofiware son cada vez mds importantes en la infraestructu-
ra critica de los paises, estos reguladores estin cada vez mas relacionados con los argumen-
tos de seguridad y confiabilidad para sistemas software.

La funcién de un regulador es comprobar que un sistema finalizado es tan seguro como
prictico, por lo que la figura del regulador se ve implicada principalmente cuando se ha com-
pletado el desarrollo del proyecto. Sin embargo, los reguladores y los desarrolladores rara-
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mente trabajan de forma aislada; se comunican con el equipo de desarrollo para establecer qué
tiene que incluirse en el argumento de seguridad. El regulador y los desarrolladores exami-
nan conjuntamente los procesos y los procedimientos para asegurarse de que €stos estdn sien-
do establecidos y documentados para satisfacer al regulador.

Por supuesto, el software en si mismo no es peligroso. Sélo cuando éste esta embebido en
un gran sisterna socio-técnico o basado en computadora, los fallos de ejecucién de dicho soft-
ware pueden provocar fallos en otros equipos o procesos que a su vez pueden ocasionar le-
siones o muertes. Por lo tanto, un argumento de seguridad del software siempre forma parte
de un argumento de seguridad de un sistema mas amplio que demuestra la seguridad del sis-
tema completo. Cuando se construye un argumento de seguridad del software, se tienen que
relacionar los fallos de ejecucién del software con fallos del sistema mas amplios y demos-
trar que estos fallos de ejecucion no ocurrirdn © que no se propagardn, de tal forma que pue-
dan producirse fallos peligrosos del sistema.

Un argumento de seguridad es un conjunto de documentos que incluye una descripeion del
sistema, que tiene que ser certificada, més informacién sobre los procesos utilizados para des-
arrollar el sisterna y, lo mds critico, argumentos ldgicos que demuestran que el sistema es pro-
bablemente seguro. M4s concretamente, Bishop y Bloomfield (Bishop y Bloomfield, 1998;
Bishop y Bloomfield, 1995) definen un argumento de seguridad como:

Un conjunto de evidencias documentadas que proporciona un argumento vdlido y con-
vincente de que un sistema es adecuadamente seguro para una aplicacion determina-
da en un entorno concreto.

La organizacion y contenidos de un argumento de seguridad depende del tipo de sistema
que tiene que certificarse y su contexto de funcionamiento. La Figura 24.11 muestra una po-
sible organizacién para un argumento de seguridad del software.

Descripcién del sistema

Una descripcidn del sistema y de sus componentes criticos.

Requerimientos de seguridad Los requerimientos de seguridad abstrafdos de la espedificacién de requerimientos del

sistema.

Andlisis de riesgos y contingencias Documentos que describen las contingencias y riesgos que tienen que identificarse y las

medidas que hay que tomar para reducir el riesgo .

Andlisis del disefio

Conjunto de argumentos estructurados que justifican por qué el disefio es seguro.

Verificacitn y validacién

Descipcitn de los procedimientos de V & V utilizados y, cuando sea adecuado, los pla-
nes de prueba del sistema,

Informes de revisiones

informes de todos las revisiones de disefio y seguridad.

Competencias del equipo Evidencia de la competencia de todos los equipos implicados en el desarrolio y valida-
ci6n de sistemnas seguros.

Procesos de garantia de calidad Informes de jos procesos de garantia de calidad Nevados a cabo durante el desarrollo del
sistema.

Procesos de gestion de cambios informes de todos los cambios propuestos, acciones tomadas y, cuando sea spropiado,

justificacion de la seguridad de estos cambios.

Argumentos de seguridad

asociados  Referencias a otros argumentos de seguridad que pueden infliir en un argumento de se-
guridad.

Figura 24.11 Componentes de un argumento de seguridad del software.
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Figura 24.12
Estructura de un
argumento.

V.

Figura 24.13
Jerarquia

de exigencias en el
argumento de
seguridad para la
bomba de insulina.

EVIDENCIA

EVIDENCIA << ARGUMENTO >>——pm | EXIGENCIA

EVIDENCIA

Un componente clave de un argumento de seguridad es un conjunto de argumentos 16-
gicos para la seguridad del sistema. Estos pueden ser argumentos absolutos (el evento X
ocurrird 0 no) o argumentos probabilisticos (la probabilidad del evento X es 0.Y); al com-
binarlos, éstos deberian demostrar la seguridad. Tal y como se muestra en la Figura 24.12,
un argumento es una relacién entre lo que se piensa que debe ser un argumento (una exi-
gencia) y un conjunto de evidencias que han sido observadas. El argumento esencialmente
explica por qué la exigencia (que generalmente es que algo es seguro) puede inferirse a par-
tir de la evidencia disponible. Naturalmente, dada la naturaleza multinivel de los sistemas,
las exigencias se organizan en una jerarquia. Para demostrar que una exigencia de alto ni-
vel es viilida, primero se tiene que trabajar a través de los argumentos desde exigencias de
niveles inferiores. La Figura 24.13 muestra una parte de esta jerarquia de exigencias para
la bomba de insulina.

Como dispositive médico, ¢l sistema de bomba de insulina tiene que ser certificado exter-
namente. Por ejemplo, en el Reino Unido, la Direccién de Dispositivos Médicos tiene que
emitir un certificado de seguridad para cualquier dispositivo médico que se venda en el Reino

La bomba de insulina
no suministrard una
dosis unica que sea

segura

I I

La dosis unica
maxima calculada
por la bomba no ex-
cederd de maxDose

maxDose se actualiza
correctamente
cuando se configura
ia bomba

maxDose es una
dosis segura para el

usuario de la bomba
de insulina

En un funcicnamiento
normal, la dosis

Si el software falla,
la dosis maxima
calculada no exce-
derd de maxDose

maxima calculada no
excederd de maxDose
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Unido. Pueden tener que generarse distintos argumentos para demostrar la seguridad de este
sistema. Por ejemplo, el siguiente argumento podria formar parte de un argumento de seguri-
dad para la bomba de insulina.

Exigencia: La dosis individual maxima de insulina calculada por la bomba no excede-
ra de maxDose.
Evidencia: Argumento de seguridad para la bomba de insulina (Figura 24.7).
Evidencia: Conjuntos de datos de prueba para la bomba de insulina.
Evidencia: Informe de anilisis estdtico para el software de la bomba de insulina.
Argumento: El argumento de seguridad presentado muestra que la dosis maxima de in-
sulina que puede ser calculada es igual a maxDose.
En 400 pruebas. el valor de Dose fue calculado correctamente y nunca ex-
cedio de maxDose.
El andlisis estdtico del software de control no revelé anomalias.
En definitiva, es razonable admitir que la exigencia esta justificada.

Por supuesto, éste es un argumento muy simplificado, y en un argumento de seguridad real
deberian presentarse referencias detalladas de la evidencia. Debido a que requieren detalles,
los argumentos de seguridad son, por lo tanto, documentos muy ex1ensos y complejos. Estan
disponibles distintas herramientas software para ayudar a su construccion, y se han incluido
enlaces a estas herramientas en las paginas web del libro.

PUNTOS CLAVE

| TOPe

W Las pruebas estadisticas se utilizan para estimar |a fiabilidad del software. Se encargan de probar el sistema
con datos de prueba que reflejen el perfil operacional del software. Los datos de prueba pueden generarse
autométicamente.

B Los modelos de crecimiento de fiabilidad muestran el cambio en la fiabilidad a medida que los defectos son
eliminados del software durante el proceso de pruebas. Los modelos de fiabilidad pueden utilizarse para pre-
decir cuando se alcanzarén los requerimientos de fiabilidad.

W Las demostraciones de seguridad son una técnica efectiva de garantia de seguridad de los productos. Mues-
tran que una condicién identificada como peligrosa nunca puede ocurrir. Normalmente son mds faciles que
probar gue un programa satisface sus especificaciones.

W Esimportante tener un proceso certificado bien definido para el desarrollo de sistemas de seguridad criticos.
El proceso debe incluir la identificacién y monitorizacién de contingencias potenciales.

M La validacién de la seguridad puede realizarse utilizando anélisis basado en la experiencia, anélisis basado
en herramientas, o «equipos tigre» que simulan ataques al sistema.

W Los argumentos de seguridad recogen toda la evidencia que demuestra que un sistema es seguro, Estos ar-
gumentos de seguridad se requieren cuando un regulador externo debe certificar el sistema antes de que éste
sea utilizado.
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LECTURAS ADICIONALES NN . RIFENN BN BN S e

«Best practices in code inspection for safety-critical software». Este trabajo practico presenta una lista de reco-
mendaciones para inspeccionar y revisar software de seguridad critico. [). R. de Almeida et al., JEEE Software, 20(3),
mayo-junio de 2003.]

«Statically scanning Java code: Finding security vulnerabilities»., Este es un buen trabajo sobre cémo evitar vulne-
rabilidades de seguridad en general. Muestra cdmo ocurren estas vulnerabilidades y cémo pueden ser detectadas
utilizando un analizador estético. [J. Viega et al., IEEE Software, 17(5), septiembre-octubre de 2000.]

Software Reliability Engineering: More Reliable Software, Faster Development and Testing. Este es probablemente
el libro definitivo sobre el uso de perfiles operacionales y modelos de fiabilidad para la evaluacién de la fiabilidad.
Incluye detalles de experiencias con pruebas estadisticas {). 0. Musa, 1998, McGraw-Hill.]

Safety-critical Computer Systems. Este excelente libro de texto incluye un capitulo particularmente bueno sobre el pa-
pel de los métodos formales en el desarrollo de sistemas de seguridad criticos. (N. Storey, 1996, Addison-Wesley.)

Safeware: System Safety and Computers. Este trabajo incluye un buen capitulo sobre validacién de sistemas de se-
guridad criticos con més detalle del que se proporciona aqui sobre el uso de argumentos de seguridad basados en
arboles de defectos. (N. Leveson, 1995, Addison-Wesley.)

EJERCICIOS 'S5 W HIERNE BEh.. I B R SR B

24.1 Describa cémo procederia para validar la especificacién de fiabilidad para un sistema de supermercados
que usted especificd en el Ejercicio 9.9. Su respuesta debe incluir una descripcién de cualquier herra-
mienta de validacion que pudiera utilizarse.

24.2  Explique por qué es practicamente imposible validar las especificaciones de fiabilidad cuando éstas se ex-
presan en términos de un niimero muy pequefio de fallos sobre el tiempo de vida total de un sistema.

24.3 Utilizando la literatura como informacion de referencia, escriba un informe para la gestidn (para quien no
tenga experiencia en esta drea) sobre el uso de los modelos de crecimiento de fiabilidad.

24.4 iEs ético para un ingeniero el aceptar que se entregue a un cliente un sistema software con defectos co-
nocidos? ¢Existe alguna diferencia si al cliente se le informa de la existencia de estos defectos con ante-
lacién? i Podria ser razonable imponer exigencias sobre la fiabilidad del software en tales circunstancias?

24.5 Explique por qué e! asegurar la fiabilidad del sistema no es una garantia de un sistema seguro.

24.6 E! mecanismo de control de bloqueo de puertas en una utilidad para un almacén de desperdicios nuclea-
res se disefia para ser una funcionalidad segura. Dicho mecanismo asegura que la entrada al almacén sélo
se permite cuando los escudos de radiacién estdn activados o cuando el nivel de radiacién en una habita-
¢ién caiga por debajo de algin valor determinado (dangerLevel). Es decir:

() Silos escudos de radiacién remotamente controlados estan activados dentro de la habitacién, la
puerta puede ser abierta por un operador auterizado.
(i) Siel nivel de radiacién esta por debajo de un valor determinado, la puerta puede ser abierta por
un operador autorizado.
(i) Un operador autorizado es identificado por la intreduccién de un codigo autorizado de entrada de
puertas.



CAPITULO 24 m Ejercicios 539

1 entryCode = lock.getEntryCode () ;
2 if (entryCode === lock.authorisedCode}
3 {
4 shieldStatus = Shield.getStatus ();
5 radiationLevel = RadSensor.get ();
6 it (radiationLevel < dangerLevel)
7 state = safe;
8 else
9 state = unsafe;

10 if {shieldStatus = Shield.inPlace() )

11 state = safe;

12 if (state == safe)

13 {

14 Doorlocked = false ;

15 Dooruniock ();

16 }

17 else

18 {

19 Doorlock ();

Figura 24.14 20 Doorlocked = true ;
Controlador para el g; y }

bloqueo de puertas.

24.7

24.8

24.9

24.10
2411

El c6digo Java mostrado en la Figura 24.14 controla el mecanismo de bloqueo de puertas. Note que el
estado seguro es que la entrada no deberia permitirse. Desarrolle un argumento de seguridad que mues-
tre que este cédigo es potencialmente no seguro. Modifique el codigo para hacerlo seguro.

Usando la especificacién para el calculo de la dosis suministrada dado en el Capitulo 10 (Figura 10.11), €s-
criba un método Java computelnsulin como el usado en la Figura 24.6. Construya un argumento informal
de seguridad de que este cddigo es seguro.

Sugiera cédmo podria validar un sistema de proteccién de contrasefias para una aplicacion que usted ha
desarrollado. Explique la funcién de cualquier herramienta que piense que pueda ser util.

éPor qué es necesario incluir detalles de los cambios del sistema en un argumento de seguridad del soft-
ware?

Enumere cuatro tipos de sistemas que podrian requerir argumentos de seguridad del software del sistema.

Suponga que usted formé parte de un equipo que desarrollé software para una planta quimica, que falld
de alguna manera, provocando un serio incidente de contaminacién. Su jefe es entrevistado en la televi-
sién y afirma que el proceso de validacién ha sido completo y que no existen defectos en el software. De-
clara que los problemas deben ser debidos a procedimientos de uso no adecuados. Un periodista se acer-
ca a usted para preguntarle su opinidn. Comente cémo podria manejar tal entrevista.



