

Traduccién:
Victor Campos Olguin
Traductor especialista en Sistemas Computacionales

Revision técnica:

Sergio Fuenlabrada Veldazquez

Edna Martha Miranda Chavez

Miguel Angel Torres Durdn

Mario Alberto Sesma Martinez

Mario Oviedo Galdeano

José Luis Lopez Goytia

Unidad Profesional Interdisciplinaria de Ingenieria y Ciencias Sociales
v Administrativas-Instituto Politécnico Nacional, México

Dario Guillermo Cardacci
Universidad Abierta Interamericana, Buenos Aires, Argentina

Marcelo Martin Marciszack
Universidad Tecnologica Nacional, Cordoba, Argentina

Addison-Wesley

Meéxico * Argentina * Brasil © Colombia ¢ Costa Rica ¢ Chile * Ecuador
Espana ¢ Guatemala ¢ Panama ¢ Pert ¢ Puerto Rico ¢ Uruguay * Venezuela

/ Datos de catalogacion bibliografica

Sommerville, Ian

Ingenieria de Software

PEARSON EDUCACION, México, 2011
ISBN: 978-607-32-0603-7

Arca: Computacion

Formato: 18.5 X 23.5 cm Pdginas: 792

Authorized translation from the English language edition, entitled Software engineering, 9th edition, by Ian Sommerville published
by Pearson Education, Inc., publishing as Addison-Wesley, Copyright © 2011. All rights reserved.
ISBN 9780137035151

Traduccion autorizada de la edicion en idioma inglés, titulada Software engineering, 9a edicion por lan Sommerville publicada por
Pearson Education, Inc., publicada como Addison-Wesley, Copyright © 2011. Todos los derechos reservados.

Esta edicion en espafiol es la tinica autorizada.

Edicion en espaiiol

Editor: Luis M. Cruz Castillo
e-mail: luis.cruz@pearson.com
Editor de desarrollo: Felipe Hernandez Carrasco

Supervisor de produccién: Juan José Garcia Guzman
NOVENA EDICION, 2011

D.R. © 2011 por Pearson Educacién de México, S.A. de C.V.
Atlacomulco 500-50. piso
Col. Industrial Atoto
53519, Naucalpan de Judrez, Estado de México

Camara Nacional de la Industria Editorial Mexicana. Reg. nim. 1031.
Addison-Wesley es una marca registrada de Pearson Educacion de México, S.A. de C.V.

Reservados todos los derechos. Ni la totalidad ni parte de esta publicacién pueden reproducirse, registrarse o transmitirse, por un
sistema de recuperacion de informacion, en ninguna forma ni por ningin medio, sea electrénico, mecédnico, fotoquimico, magnético
o electrodptico, por fotocopia, grabacion o cualquier otro, sin permiso previo por escrito del editor.

El préstamo, alquiler o cualquier otra forma de cesion de uso de este ejemplar requerira también la autorizacion del editor o de sus
representantes.

ISBN VERSION IMPRESA: 978-607-32-0603-7
ISBN VERSION E-BOOK: 978-607-32-0604-4
ISBN E-CHAPTER: 978-607-32-0605-1

PRIMERA IMPRESION
Impreso en México. Printed in Mexico.

1234567890- 14131211

Addison Wesley
es una marca de

PEARSON

/\

Contenido xi

7.3 Conflictos de implementacion 193
7.4 Desarrollo de codigo abierto 198
Pruebas de software 205
8.1 Pruebas de desarrollo 210
8.2 Desarrollo dirigido por pruebas 221
8.3 Pruebas de version 224
8.4 Pruebas de usuario 228
Evolucién del software 234
9.1 Procesos de evolucion 237
9.2 Evolucién dindmica del programa 240
9.3 Mantenimiento del software 242
9.4 Administracion de sistemas heredados 252
Confiabilidad y seguridad 261
Sistemas sociotécnicos 263
10.1 Sistemas complejos 266
10.2 Ingenieria de sistemas 273
10.3 Procuracion del sistema 275
10.4 Desarrollo del sistema 278
10.5 Operacion del sistema 281
Confiabilidad y seguridad 289
11.1 Propiedades de confiabilidad 291
11.2 Disponibilidad y fiabilidad 295
11.3 Proteccion 299
11.4 Seguridad 302

Pruebas de software

Objetivos

El objetivo de este capitulo es introducirlo a las pruebas del
software y los procesos necesarios para tales pruebas. Al estudiar
este capitulo:

m comprendera las etapas de las pruebas, desde las pruebas
durante el desarrollo hasta la prueba de aceptacién por los
clientes del sistema;

m seintroducira en las técnicas que ayudan a elegir casos de
prueba que se ponen en funcionamiento para descubrir los
defectos del programa;

m entendera el desarrollo de la primera prueba, donde se
disenan pruebas antes de escribir el cédigo, las cuales operan
automaticamente;

m conocera las diferencias importantes entre pruebas de
componente, de sistemay de liberacion, y estara al tanto de los
procesos y las técnicas de prueba del usuario.

Contenido

8.1 Pruebas de desarrollo

8.2 Desarrollo dirigido por pruebas
8.3 Pruebas de version

8.4 Pruebas de usuario

206 Capitulo 8 m Pruebas de software

Las pruebas intentan demostrar que un programa hace lo que se intenta que haga, asi
como descubrir defectos en el programa antes de usarlo. Al probar el software, se ejecuta
un programa con datos artificiales. Hay que verificar los resultados de la prueba que
se opera para buscar errores, anomalias o informacién de atributos no funcionales del
programa.

El proceso de prueba tiene dos metas distintas:

1. Demostrar al desarrollador y al cliente que el software cumple con los requerimien-
tos. Para el software personalizado, esto significa que en el documento de reque-
rimientos debe haber, por lo menos, una prueba por cada requerimiento. Para los
productos de software genérico, esto quiere decir que tiene que haber pruebas para
todas las caracteristicas del sistema, junto con combinaciones de dichas caracteristi-
cas que se incorporardn en la liberacién del producto.

2. Encontrar situaciones donde el comportamiento del software sea incorrecto, inde-
seable o no esté de acuerdo con su especificacion. Tales situaciones son consecuen-
cia de defectos del software. La prueba de defectos tiene la finalidad de erradicar
el comportamiento indeseable del sistema, como caidas del sistema, interacciones
indeseadas con otros sistemas, cdlculos incorrectos y corrupcion de datos.

La primera meta conduce a la prueba de validacion; en ella, se espera que el sistema
se desempefie de manera correcta mediante un conjunto dado de casos de prueba, que
refleje el uso previsto del sistema. La segunda meta se orienta a pruebas de defectos,
donde los casos de prueba se disefian para presentar los defectos. Los casos de prueba
en las pruebas de defecto pueden ser deliberadamente confusos y no necesitan expresar
como se usa normalmente el sistema. Desde luego, no hay frontera definida entre estos
dos enfoques de pruebas. Durante las pruebas de validacién, usted descubrird defectos en
el sistema; en tanto que durante las pruebas de defecto algunas de las pruebas demostra-
rdn que el programa cumple con sus requerimientos.

El diagrama de la figura 8.1 ayuda a explicar las diferencias entre las pruebas de vali-
dacién y de defecto. Piense en el sistema que va a probar como si fuera una caja negra.
El sistema acepta entradas desde algtin conjunto de entradas I y genera salidas en un con-
junto de salidas O. Algunas de las salidas serdn erréneas. Son las salidas en el conjunto
O, que el sistema genera en respuesta a las entradas en el conjunto I.. La prioridad en
las pruebas de defecto es encontrar dichas entradas en el conjunto I, porque ellas revelan
problemas con el sistema. Las pruebas de validacion involucran pruebas con entradas
correctas que estan fuera de I, y estimulan al sistema para generar las salidas correc-
tas previstas.

Las pruebas no pueden demostrar que el software esté exento de defectos o que se
comportard como se especifica en cualquier circunstancia. Siempre es posible que una
prueba que usted pase por alto descubra mds problemas con el sistema. Como afirma de
forma elocuente Edsger Dijkstra, uno de los primeros contribuyentes al desarrollo de la
ingenieria de software (Dijkstra et al., 1972):

Las pruebas pueden mostrar solo la presencia de errores, mas no su ausencia.

Las pruebas se consideran parte de un proceso mas amplio de verificacion y validacion
(V&V) del software. Aunque ambas no son lo mismo, se confunden con frecuencia. Barry

Capitulo 8 m Pruebas de software 207

Figura 8.1 Modelo de
entrada y salida de una
prueba de programa

Entrada de datos

de prueba le ———— Entradas que provocan
comportamiento
anémalo
\ \
Sistema
\ \
Salida de resultados O, ——— Salidas que revelan
de prueba presencia de
defectos

Boehm, pionero de la ingenieria de software, expresé de manera breve la diferencia entre
las dos (Boehm, 1979):

m “Validacién: {construimos el producto correcto?”.

m “Verificacidn: ;construimos bien el producto?”.

Los procesos de verificacién y validacién buscan comprobar que el software por desa-
rrollar cumpla con sus especificaciones, y brinde la funcionalidad deseada por las perso-
nas que pagan por el software. Dichos procesos de comprobacidn comienzan tan pronto
como estan disponibles los requerimientos y contindan a través de todas las etapas del
proceso de desarrollo.

La finalidad de la verificacién es comprobar que el software cumpla con su funciona-
lidad y con los requerimientos no funcionales establecidos. Sin embargo, la validacion es
un proceso mds general. La meta de la validacion es garantizar que el software cumpla
con las expectativas del cliente. Va mas alla del simple hecho de comprobar la confor-
midad con la especificacién, para demostrar que el software hace lo que el cliente espera
que haga. La validacién es esencial pues, como se estudi6 en el capitulo 4, las especifi-
caciones de requerimientos no siempre reflejan los deseos o las necesidades reales de los
clientes y usuarios del sistema.

El objetivo final de los procesos de verificacion y validacion es establecer confianza de
que el sistema de software es “adecuado”. Esto significa que el sistema tiene que ser lo bas-
tante eficaz para su uso esperado. El nivel de confianza adquirido depende tanto del propd-
sito del sistema y las expectativas de los usuarios del sistema, como del entorno del mercado
actual para el sistema:

1. Propdsito del software Cuanto mads critico sea el software, mas importante debe
ser su confiabilidad. Por ejemplo, el nivel de confianza requerido para que se use
el software en el control de un sistema critico de seguridad es mucho mayor que el
requerido para un prototipo desarrollado para demostrar nuevas ideas del producto.

2. Expectativas del usuario Debido a su experiencia con software no confiable y pla-
gado de errores, muchos usuarios tienen pocas expectativas de la calidad del software,
por lo que no se sorprenden cuando éste falla. Al instalar un sistema, los usuarios

208 Capitulo 8 m Pruebas de software

Inspecciones

'

' ' ' '

Especificacion Arquitectura Modelos de Esquemas Programa
de requerimientos de software disefio UML de base de datos 8
Prototipo Pruebas
de sistema

Figura 8.2 Inspecciones
y pruebas

podrian soportar fallas, porque los beneficios del uso exceden los costos de la recu-
peracion de fallas. Ante tales situaciones, no es necesario dedicar mucho tiempo en
la puesta a prueba del software. Sin embargo, conforme el software se completa, los
usuarios esperan que se torne mas confiable, de modo que pueden requerirse prue-
bas exhaustivas en versiones posteriores.

3. Entorno de mercado Cuando un sistema se comercializa, los vendedores del sis-
tema deben considerar los productos competitivos, el precio que los clientes estan
dispuestos a pagar por un sistema y la fecha requerida para entregar dicho sistema.
En un ambiente competitivo, una compaiiia de software puede decidir lanzar al mer-
cado un programa antes de estar plenamente probado y depurado, pues quiere que
sus productos sean los primeros en ubicarse. Si un producto de software es muy
economico, los usuarios tal vez toleren un nivel menor de fiabilidad.

Al igual que las pruebas de software, el proceso de verificacién y validacién impli-
caria inspecciones y revisiones de software. Estas tltimas analizan y comprueban los
requerimientos del sistema, los modelos de disefio, el cédigo fuente del programa, e
incluso las pruebas propuestas para el sistema. Estas son las llamadas técnicas V&V
“estdticas” donde no es necesario ejecutar el software para verificarlo. La figura 8.2
indica que las inspecciones y las pruebas del software soportan V&V en diferentes eta-
pas del proceso del software. Las flechas sefialan las etapas del proceso en que pueden
usarse las técnicas.

Las inspecciones se enfocan principalmente en el codigo fuente de un sistema, aun
cuando cualquier representacion legible del software, como sus requerimientos o modelo
de disefio, logre inspeccionarse. Cuando un sistema se inspecciona, se utiliza el conoci-
miento del sistema, su dominio de aplicacion y el lenguaje de programacion o modelado
para descubrir errores.

Hay tres ventajas en la inspeccién del software sobre las pruebas:

1. Durante las pruebas, los errores pueden enmascarar (ocultar) otras fallas. Cuando un
error lleva a salidas inesperadas, nunca se podra asegurar si las anomalias de salida
posteriores se deben a un nuevo error o son efectos colaterales del error original.
Puesto que la inspeccidn es un proceso estatico, no hay que preocuparse por las inte-
racciones entre errores. En consecuencia, una sola sesioén de inspeccion descubriria
muchos errores en un sistema.

Capitulo 8 m Pruebas de software 209

@ Planeacion de pruebas

La planeacién de pruebas se interesa por la fecha y los recursos de todas las actividades durante el proceso
de pruebas. Incluye la definicion del proceso de pruebas, al tomar en cuenta tanto al personal como

el tiempo disponible. Por lo general, se crearad un plan de prueba que define lo que debe probarse, la fecha
establecida de pruebas y como se registraran éstas. Para sistemas criticos, el plan de prueba también puede
incluir detalles de las pruebas que se van a correr en el software.

http://www.SoftwareEngineering-9.com/Web/Testing/Planning.html

2. Las versiones incompletas de un sistema se pueden inspeccionar sin costos adicio-
nales. Si un programa estd incompleto, entonces es necesario desarrollar equipos de
prueba especializados para poner a prueba las partes disponibles. Evidentemente,
esto genera costos para el desarrollo del sistema.

3. Ademds de buscar defectos de programa, una inspeccion puede considerar también
atributos mas amplios de calidad de un programa, como el cumplimiento con estan-
dares, la portabilidad y la mantenibilidad. Pueden buscarse ineficiencias, algoritmos
inadecuados y estilos de programacion imitados que hagan al sistema dificil de man-
tener y actualizar.

Las inspecciones de programa son una idea antigua y la mayoria de estudios y experi-
mentos indican que las inspecciones son mas efectivas para el descubrimiento de defec-
tos, que para las pruebas del programa. Fagan (1986) reporté que mas del 60% de los
errores en un programa se detectan mediante inspecciones informales de programa. En el
proceso de Cleanroom (cuarto limpio) (Prowell et al., 1999) se afirma que mas del 90%
de los defectos pueden detectarse en inspecciones del programa.

Sin embargo, las inspecciones no sustituyen las pruebas del software, ya que no son
eficaces para descubrir defectos que surjan por interacciones inesperadas entre diferentes
partes de un programa, problemas de temporizacion o dificultades con el rendimiento
del sistema. Mds atin, en compafifas o grupos de desarrollo pequefios, suele ser espe-
cialmente dificil y costoso reunir a un equipo de inspeccion separado, ya que todos los
miembros potenciales del equipo también podrian ser desarrolladores de software. En el
capitulo 24 (“Gestion de la calidad”) se estudian las revisiones e inspecciones con mas
detenimiento. En el capitulo 15 se explica el andlisis estdtico automatizado, en el cual el
texto fuente de un programa se analiza automaticamente para descubrir anomalias. Este
capitulo se enfoca en las pruebas y los procesos de pruebas.

La figura 8.3 presenta un modelo abstracto del proceso de prueba “tradicional”, como
se utiliza en el desarrollo dirigido por un plan. Los casos de prueba son especificaciones
de las entradas a la prueba y la salida esperada del sistema (los resultados de la prueba),
ademas de informacidn sobre lo que se pone a prueba. Los datos de prueba son las entradas
que se diseflaron para probar un sistema. En ocasiones pueden generarse automaticamente
datos de prueba; no obstante, es imposible la generacién automdtica de casos de prueba,
pues debe estar implicada gente que entienda lo que se supone que tiene que hacer el sis-
tema para especificar los resultados de prueba previstos. Sin embargo, es posible automa-
tizar la ejecucion de pruebas. Los resultados previstos se comparan automaticamente con
los resultados establecidos, de manera que no haya necesidad de que un individuo busque
errores y anomalias al correr las pruebas.

210 Capitulo 8 m Pruebas de software

Casos Resultados Reportes

de prueba de prueba _l de prueba de prueba

Disefar casos
de prueba

Figura 8.3 Modelo
del proceso de pruebas
de software

Preparar datos Correr el programa Comparar resultados
de prueba con datos de prueba de casos de prueba

Por lo general, un sistema de software comercial debe pasar por tres etapas de pruebas:

1. Pruebas de desarrollo, donde el sistema se pone a prueba durante el proceso para
descubrir errores (bugs) y defectos. Es probable que en el desarrollo de prueba inter-
vengan disefiadores y programadores del sistema.

2. Versiones de prueba, donde un equipo de prueba por separado experimenta una ver-
sién completa del sistema, antes de presentarlo a los usuarios. La meta de la prueba
de version es comprobar que el sistema cumpla con los requerimientos de los parti-
cipantes del sistema.

3. Pruebas de usuario, donde los usuarios reales o potenciales de un sistema prueban
el sistema en su propio entorno. Para productos de software, el “usuario” puede ser
un grupo interno de marketing, que decide si el software se comercializa, se lanza y
se vende. Las pruebas de aceptacion se efectian cuando el cliente prueba de manera
formal un sistema para decidir si debe aceptarse del proveedor del sistema, o si se
requiere mas desarrollo.

En la préctica, el proceso de prueba por lo general requiere una combinacién de prue-
bas manuales y automatizadas. En las primeras pruebas manuales, un examinador opera
el programa con algunos datos de prueba y compara los resultados con sus expectativas.
Anota y reporta las discrepancias con los desarrolladores del programa. En las pruebas
automatizadas, éstas se codifican en un programa que opera cada vez que se prueba el sis-
tema en desarrollo. Comuinmente esto es mas rapido que las pruebas manuales, sobre todo
cuando incluye pruebas de regresion, es decir, aquellas que implican volver a correr prue-
bas anteriores para comprobar que los cambios al programa no introdujeron nuevos bugs.

El uso de pruebas automatizadas aument6 de manera considerable durante los Gltimos
afios. Sin embargo, las pruebas nunca pueden ser automatizadas por completo, ya que esta
clase de pruebas sélo comprueban que un programa haga lo que supone que tiene que hacer.
Es pricticamente imposible usar pruebas automatizadas para probar sistemas que dependan
de como se ven las cosas (por ejemplo, una interfaz grafica de usuario) o probar que un pro-
grama no presenta efectos colaterales indeseados.

Pruebas de desarrollo

Las pruebas de desarrollo incluyen todas las actividades de prueba que realiza el equipo
que elabora el sistema. El examinador del software suele ser el programador que disefi6
dicho software, aunque éste no es siempre el caso. Algunos procesos de desarrollo usan
parejas de programador/examinador (Cusamano y Selby, 1998) donde cada programador

8.1 m Pruebas de desarrollo 211

@ Depuracion

Depuracién (debugging) es el proceso para corregir los errores y problemas descubiertos por las pruebas. Al
usar informacion de las pruebas del programa, los depuradores, para localizar y reparar el error del programa,
emplean tanto su conocimiento del lenguaje de programacion como el resultado que se espera de la prueba.
Este proceso recibe con frecuencia apoyo de herramientas de depuracién interactivas que brindan informacién
adicional sobre la ejecucion del programa.

http://www.SoftwareEngineering-9.com/Web/Testing/Debugging.html

tiene un examinador asociado que desarrolla pruebas y auxilia con el proceso de pruebas.
Para sistemas criticos, puede usarse un proceso mas formal, con un grupo de prueba inde-
pendiente dentro del equipo de desarrollo. Son responsables del desarrollo de pruebas y
del mantenimiento de registros detallados de los resultados de las pruebas.

Durante el desarrollo, las pruebas se realizan en tres niveles de granulacidn:

1. Pruebas de unidad, donde se ponen a prueba unidades de programa o clases de obje-
tos individuales. Las pruebas de unidad deben enfocarse en comprobar la funciona-
lidad de objetos o métodos.

2. Pruebas del componente, donde muchas unidades individuales se integran para crear
componentes compuestos. La prueba de componentes debe enfocarse en probar
interfaces del componente.

3. Pruebas del sistema, donde algunos o todos los componentes en un sistema se inte-
gran y el sistema se prueba como un todo. Las pruebas del sistema deben enfocarse
en poner a prueba las interacciones de los componentes.

Las pruebas de desarrollo son, ante todo, un proceso de prueba de defecto, en las cua-
les la meta consiste en descubrir bugs en el software. Por lo tanto, a menudo estdn entre-
lazadas con la depuracion: el proceso de localizar problemas con el cddigo y cambiar el
programa para corregirlos.

8.1.1 Pruebas de unidad

Las pruebas de unidad son el proceso de probar componentes del programa, como méto-
dos o clases de objetos. Las funciones o los métodos individuales son el tipo mas simple
de componente. Las pruebas deben Ilamarse para dichas rutinas con diferentes parame-
tros de entrada. Usted puede usar los enfoques para el disefio de casos de prueba que
se estudian en la seccidn 8.1.2, con la finalidad de elaborar las pruebas de funcién o de
método.

Cuando pone a prueba las clases de objetos, tiene que disenar las pruebas para brindar
cobertura a todas las caracteristicas del objeto. Esto significa que debe:

* probar todas las operaciones asociadas con el objeto;
* establecer y verificar el valor de todos los atributos relacionados con el objeto;

* poner el objeto en todos los estados posibles. Esto quiere decir que tiene que simular
todos los eventos que causen un cambio de estado.

212 Capitulo 8 m Pruebas de software

Figura 8.4 Interfaz
de objeto de estacion
meteoroldgica

EstacionMeteorologica

identificador

reportWeather ()
reportStatus ()

powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

Considere, por ejemplo, el objeto de estacién meteoroldgica del modelo analizado en
el capitulo 7. La interfaz de este objeto se muestra en la figura 8.4. Tiene un solo atributo,
que es su identificador (identifier). Esta es una constante que se establece cuando se instala
la estacion meteoroldgica. Por consiguiente, s6lo se necesita una prueba que demuestre si se
configuré de manera adecuada. Usted necesita definir casos de prueba para todos los méto-
dos asociados con el objeto, como reportWeather, reportStatus, etcétera. Aunque lo ideal es
poner a prueba los métodos en aislamiento, en algunos casos son precisas ciertas secuencias
de prueba. Por ejemplo, para someter a prueba el método que desactiva los instrumentos de
la estacion meteoroldgica (shutdown), se necesita ejecutar el método restart (reinicio).

La generalizacién o herencia provoca que sea mas complicada la prueba de las clases
de objetos. Usted no debe poner tinicamente a prueba una operacién en la clase donde
se definid, ni suponer que funcionard como se esperaba en las subclases que heredan la
operacion. La operacion que se hereda puede hacer conjeturas sobre otras operaciones y
atributos. Es posible que no sean validas en algunas subclases que hereden la operacidn.
Por consiguiente, tiene que poner a prueba la operacién heredada en todos los contextos
en que se utilice.

Para probar los estados de la estacién meteoroldgica, se usa un modelo de estado, tal
como el que se muestra en la figura 7.8 del capitulo anterior. Al usar este modelo, iden-
tificara secuencias de transiciones de estado que deban probarse y definira secuencias de
eventos para forzar dichas transiciones. En principio, hay que probar cualquier secuencia
posible de transicién de estado, aunque en la practica ello resulte muy costoso. Los ejem-
plos de secuencias de estado que deben probarse en la estacién meteorolégica incluyen:

Shutdown — Running — Shutdown
Configuring — Running — Testing — Transmitting — Running
Running — Collecting — Running — Summarizing — Transmitting — Running

Siempre que sea posible, se deben automatizar las pruebas de unidad. En estas pruebas
de unidad automatizadas, podria usarse un marco de automatizacién de pruebas (como
JUnit) para escribir y correr sus pruebas de programa. Los marcos de pruebas de unidad
ofrecen clases de pruebas genéricas que se extienden para crear casos de prueba espe-
cificos. En tal caso, usted podra correr todas las pruebas que implementd y reportar, con
frecuencia mediante alguna GUI, el éxito o el fracaso de las pruebas. Es comtn que toda
una serie de pruebas completa opere en algunos segundos, de modo que es posible ejecutar
todas las pruebas cada vez que efectie un cambio al programa.

Un conjunto automatizado de pruebas tiene tres partes:

1. Una parte de configuracion, en la cual se inicializa el sistema con el caso de prueba,
esto es, las entradas y salidas esperadas.

8.1 m Pruebas de desarrollo 213

8.1.2

2. Una parte de llamada (call), en la cual se llama al objeto o al método que se va a
probar.

3. Una parte de declaracion, en la cual se compara el resultado de la llamada con el
resultado esperado. Si la informacion se evalda como verdadera, la prueba tuvo
éxito; pero si resulta falsa, entonces fracaso.

En ocasiones, el objeto que se prueba tiene dependencias de otros objetos que tal
vez no se escribieron o que, si se utilizan, frenan el proceso de pruebas. Si su objeto
llama a una base de datos, por ejemplo, esto requeriria un proceso de configuracién lento
antes de usarse. En tales casos, usted puede decidir usar objetos mock (simulados). Estos
son objetos con la misma interfaz como los usados por objetos externos que simulan su
funcionalidad. Por ende, un objeto mock que aparenta una base de datos suele tener sélo
algunos items de datos que se organizan en un arreglo. Por lo tanto, puede entrar rapi-
damente a ellos, sin las sobrecargas de llamar a una base de datos y acceder a discos.
De igual modo, los objetos mock pueden usarse para simular una operacién anormal o
eventos extrafios. Por ejemplo, si se pretende que el sistema tome accién en ciertas horas
del dia, su objeto mock simplemente regresard estas horas, independientemente de la hora
real en el reloj.

Eleccion de casos de pruebas de unidad

Las pruebas son costosas y consumen tiempo, asi que es importante elegir casos efecti-
vos de pruebas de unidad. La efectividad significa, en este caso, dos cuestiones:

1. Los casos de prueba tienen que mostrar que, cuando se usan como se esperaba, el
componente que se somete a prueba hace lo que se supone que debe hacer.

2. Si hay defectos en el componente, éstos deberian revelarse mediante los casos de
prueba.

En consecuencia, hay que escribir dos tipos de casos de prueba. El primero debe refle-
jar una operacidon normal de un programa y mostrar que el componente funciona. Por
ejemplo, si usted va a probar un componente que crea e inicia el registro de un nuevo
paciente, entonces, su caso de prueba debe mostrar que el registro existe en una base
de datos, y que sus campos se configuraron como se especific. El otro tipo de caso de
prueba tiene que basarse en probar la experiencia de donde surgen problemas comunes.
Debe usar entradas anormales para comprobar que se procesan de manera adecuada sin
colapsar el componente.

Aqui se discuten dos estrategias posibles que serian efectivas para ayudarle a elegir
casos de prueba. Se trata de:

1. Prueba de particién, donde se identifican grupos de entradas con caracteristicas
comunes y se procesan de la misma forma. Debe elegir las pruebas dentro de cada
uno de dichos grupos.

2. Pruebas basadas en lineamientos, donde se usan lineamientos para elegir los casos
de prueba. Dichos lineamientos reflejan la experiencia previa de los tipos de erro-
res que suelen cometer los programadores al desarrollar componentes.

214 Capitulo 8 m Pruebas de software

Figura 8.5 Particion

de equivalencia

Particiones de equivalencia de entrada Particiones de salida

:

— Sistema — Y

Salidas /

correctas

Entradas posibles Salidas posibles

Los datos de entrada y los resultados de salida de un programa regularmente caen
en un numero de clases diferentes con caracteristicas comunes. Los ejemplos de es-
tas clases son nimeros positivos, niimeros negativos y selecciones de mend. Por lo gene-
ral, los programas se comportan en una forma comparable a todos los miembros de una
clase. Esto es, si usted prueba un programa que hace un célculo y requiere dos nimeros posi-
tivos, entonces esperaria que el programa se comportara de igual modo en todos los niimeros
positivos.

Debido a este comportamiento equivalente, dichas clases se llaman en ocasiones par-
ticiones de equivalencia o dominios (Bezier, 1990). Para el disefio de casos de prueba, un
enfoque sistematico se basa en identificar todas las particiones de entrada y salida para
un sistema o unos componentes. Los casos de prueba se elaboran de forma que las entra-
das o salidas se encuentren dentro de dichas particiones. La prueba de particion sirve
para diseflar casos de prueba tanto para sistemas como para componentes.

En la figura 8.5, la elipse sombreada mds grande ubicada en el lado izquierdo repre-
senta el conjunto de todas las entradas posibles al programa que se someterd a prueba.
Las elipses mds pequeiias sin sombrear constituyen particiones de equivalencia. Un pro-
grama que se ponga a prueba debe procesar de la misma forma todos los miembros de
las particiones de equivalencia de entrada. Las particiones de equivalencia de salida son
particiones dentro de las cuales todas las salidas tienen algo en comiin. En ocasiones hay
un mapeo 1:1 entre particiones de equivalencia de entrada y salida. Sin embargo, éste no
siempre es el caso; quizds usted necesite definir una particion de equivalencia de entrada
independiente, donde la tnica caracteristica comun de las entradas sea que generan sali-
das dentro de la misma particién de salida. El drea sombreada en la elipse izquierda
representa excepciones que pueden ocurrir (es decir, respuestas a entradas invélidas).

Una vez identificado el conjunto de particiones, los casos de prueba se eligen de cada
una de dichas particiones. Una buena regla empirica para la seleccion de casos de prueba
es seleccionar casos de prueba en las fronteras de las particiones, ademads de casos cerca del
punto medio de la particién. La razén es que disefladores y programadores tienden a consi-
derar valores tipicos de entradas cuando se desarrolla un sistema. Estos se prueban al elegir
el punto medio de la particién. Los valores frontera son usualmente atipicos (por ejemplo,
cero puede comportarse de manera diferente a otros nimeros no negativos), de modo que
a veces los desarrolladores los pasan por alto. Con frecuencia ocurren fallas del programa
cuando se procesan estos valores atipicos.

8.1 m Pruebas de desarrollo 215

Figura 8.6 Particiones
de equivalencia

3 11
4 7 10
Menos de 4 Entre 4y 10 Mas de 10

Numero de valores de entrada

9999 100 000
10 000 50000 99999

S

Menos de 10 000 Entre 10 000 y 99 999 Mas de 99 999

Valores de entrada

Las particiones se identifican mediante la especificacion del programa o la documen-
tacion del usuario y a partir de la experiencia, de donde se predicen las clases de valor de
entrada que es probable que detecten errores. Por ejemplo, digamos que la especificacion
de un programa establece que el programa acepta de 4 a 8 entradas que son cinco digitos
enteros mayores que 10000. Usted usa esta informacidn para identificar las particiones
de entrada y los posibles valores de entrada de prueba. Esto se muestra en la figura 8.6.

Cuando se usa la especificacion de un sistema para reconocer particiones de equivalen-
cia, se llama “pruebas de caja negra”. Aqui no es necesario algiin conocimiento de cémo
funciona el sistema. Sin embargo, puede ser Util complementar las pruebas de caja negra
con “pruebas de caja blanca”, en las cuales se busca el c6digo del programa para encontrar
otras posibles pruebas. Por ejemplo, su cédigo puede incluir excepciones para manejar las
entradas incorrectas. Este conocimiento se utiliza para identificar “particiones de excep-
cion”: diferentes rangos donde deba aplicarse el mismo manejo de excepcion.

La particién de equivalencia es un enfoque efectivo para las pruebas, porque ayuda a
explicar los errores que cometen con frecuencia los programadores al procesar entradas
en los bordes de las particiones. Usted también puede usar lineamientos de prueba para
ayudarse a elegir casos de prueba. Los lineamientos encapsulan conocimiento sobre qué
tipos de casos de prueba son efectivos para la deteccion de errores. Por ejemplo, cuando
se prueban programas con secuencias, arreglos o listas, los lineamientos que pueden ayu-
dar a revelar defectos incluyen:

1. Probar software con secuencias que tengan s6lo un valor tnico. Los programadores
naturalmente consideran a las secuencias como compuestas por muchos valores vy,
en ocasiones, incrustan esta suposicion en sus programas. En consecuencia, si se
presenta una secuencia de un valor tnico, es posible que un programa no funcione
de manera adecuada.

2. Usar diferentes secuencias de diversos tamafios en distintas pruebas. Esto dismi-
nuye las oportunidades de que un programa con defectos genere accidentalmente
una salida correcta, debido a algunas caracteristicas accidentales de la entrada.

3. Derivar pruebas de modo que se acceda a los elementos primero, medio y dltimo de
la secuencia. Este enfoque revela problemas en las fronteras de la particion.

216 Capitulo 8 m Pruebas de software

8.1.3

@ Pruebas de trayectoria

Las pruebas de trayectoria son una estrategia de prueba que se dirige principalmente a ejercitar cada trayectoria
de ejecucion independiente a través de un componente o programa. Si se ejecuta cualquier trayectoria
independiente, entonces deben ejecutarse todos los enunciados en el componente al menos una vez. Todos los
enunciados condicionales se prueban para los casos verdadero y falso. En un proceso de desarrollo orientado a
objetos, la prueba de trayectoria puede usarse cuando se prueban los métodos asociados con los objetos.

http://www.SoftwareEngineering-9.com/Web/Testing/PathTest.html|

El libro de Whittaker (2002) incluye muchos ejemplos de lineamientos que se pueden
utilizar en el disefio de casos de prueba. Algunos de los lineamientos mds generales que
sugiere son:

m Elegir entradas que fuercen al sistema a generar todos los mensajes de error;
m Diseifiar entradas que produzcan que los buffers de entrada se desborden;

m Repetir varias veces la misma entrada o serie de entradas;

m Forzar la generacién de salidas invélidas;

m Forzar resultados de calculo demasiado largos o demasiado pequeiios.

Conforme adquiera experiencia con las pruebas, usted podrd desarrollar sus propios
lineamientos sobre como elegir casos de prueba efectivos. En la siguiente seccién de este
capitulo se incluyen mas ejemplos de lineamientos de prueba.

Pruebas de componentes

En general, los componentes de software son componentes compuestos constituidos por
varios objetos en interaccion. Por ejemplo, en el sistema de la estacion meteoroldgica, el
componente de reconfiguracién incluye objetos que tratan con cada aspecto de la recon-
figuracion. El acceso a la funcionalidad de dichos objetos es a través de la interfaz de
componente definida. Por consiguiente, la prueba de componentes compuestos tiene que
enfocarse en mostrar que la interfaz de componente se comporta segin su especificacion.
Usted puede suponer que dentro del componente se completaron las pruebas de unidad
sobre el objeto individual.

La figura 8.7 ilustra la idea de la prueba de interfaz de componente. Suponga que los
componentes A, B y C se integraron para crear un componente o subsistema mds grande.
Los casos de prueba no se aplican a los componentes individuales, sino mds bien a la interfaz
del componente compuesto, creado al combinar tales componentes. Los errores de inter-
faz en el componente compuesto quiza no se detecten al poner a prueba los objetos individua-
les, porque dichos errores resultan de interacciones entre los objetos en el componente.

Existen diferentes tipos de interfaz entre componentes de programa y, en consecuencia,
distintos tipos de error de interfaz que llegan a ocurrir:

1. Interfaces de pardmetro Son interfaces en que los datos, o en ocasiones referen-
cias de funcién, pasan de un componente a otro. Los métodos en un objeto tienen
una interfaz de parametro.

8.1 m Pruebas de desarrollo 217

Figura 8.7 Prueba
de interfaz

Casos
de prueba

an
+ |

—_—

o]

Interfaces de memoria compartida Son interfaces en que un bloque de memoria se
reparte entre componentes. Los datos se colocan en la memoria de un subsistema y
otros subsistemas los recuperan de ahi. Este tipo de interfaz se usa con frecuencia en
sistemas embebidos, donde los sensores crean datos que se recuperan y son procesa-
dos por otros componentes del sistema.

Interfaces de procedimiento Son interfaces en que un componente encapsula un
conjunto de procedimientos que pueden ser llamados por otros componentes. Los
objetos y otros componentes reutilizables tienen esta forma de interfaz.

Interfaces que pasan mensajes Se trata de interfaces donde, al enviar un men-
saje, un componente solicita un servicio de otro componente. El mensaje de retorno
incluye los resultados para ejecutar el servicio. Algunos sistemas orientados a obje-
tos tienen esta forma de interfaz, asi como los sistemas cliente-servidor.

Los errores de interfaz son una de las formas mas comunes de falla en los sistemas

complejos (Lutz, 1993). Dichos errores caen en tres clases:

Uso incorrecto de interfaz Un componente que llama a otro componente y comete
algtin error en el uso de su interfaz. Este tipo de error es comun con interfaces de para-
metro, donde los pardmetros pueden ser del tipo equivocado, o bien, pasar en el orden
o el nimero equivocados de pardmetros.

Mala interpretacion de interfaz Un componente que malinterpreta la especifica-
cién de la interfaz del componente llamado y hace suposiciones sobre su comporta-
miento. El componente llamado no se comporta como se esperaba, lo cual entonces
genera un comportamiento imprevisto en el componente que llama. Por ejemplo,
un método de busqueda binaria puede llamarse con un parametro que es un arreglo
desordenado. Entonces fallarfa la basqueda.

Errores de temporizacion Ocurren en sistemas de tiempo real que usan una memoria
compartida o una interfaz que pasa mensajes. El productor de datos y el consumidor
de datos operan a diferentes niveles de rapidez. A menos que se tenga cuidado par-
ticular en el disefio de interfaz, el consumidor puede acceder a informacidn obsoleta,

218 Capitulo 8 m Pruebas de software

porque el productor de la informacién no actualiz6 la informacién de la interfaz
compartida.

Las pruebas por defectos de interfaz son dificiles porque algunas fallas de interfaz
s6lo pueden manifestarse ante condiciones inusuales. Por ejemplo, se dice que un objeto
implementa una cola como una estructura de datos de longitud fija. Un objeto que llama
puede suponer que la cola se implementd como una estructura de datos infinita y no
verificaria el desbordamiento de la cola, cuando se ingresa un item. Esta condicién s6lo
se logra detectar durante las pruebas, al disefar casos de prueba que fuercen el desbor-
damiento de la cola, y causen que el desbordamiento corrompa el comportamiento del
objeto en cierta forma detectable.

Un problema posterior podria surgir derivado de interacciones entre fallas en dife-
rentes moédulos u objetos. Las fallas en un objeto sélo se detectan cuando algin otro
objeto se comporta de una forma inesperada. Por ejemplo, un objeto llama a otro objeto
para recibir alglin servicio y supone que es correcta la respuesta; si el servicio de lla-
mada es deficiente en algiin modo, el valor devuelto puede ser vdlido pero equivocado.
Esto no se detecta de inmediato, sino s6lo se vuelve evidente cuando algin cdlculo
posterior sale mal.

Algunos lineamientos generales para las pruebas de interfaz son:

1. Examinar el cédigo que se va a probar y listar explicitamente cada llamado a un
componente externo. Disefie un conjunto de pruebas donde los valores de los para-
metros hacia los componentes externos estén en los extremos finales de sus ran-
gos. Dichos valores extremos tienen mds probabilidad de revelar inconsistencias de
interfaz.

2. Donde los punteros pasen a través de una interfaz, pruebe siempre la interfaz con
pardmetros de puntero nulo.

3. Donde un componente se llame a través de una interfaz de procedimiento, disefie
pruebas que deliberadamente hagan que falle el componente. Diferir las suposi-
ciones de falla es una de las interpretaciones de especificacién equivocadas mas
comunes.

4. Use pruebas de esfuerzo en los sistemas que pasan mensajes. Esto significa que
debe disefiar pruebas que generen muchos mds mensajes de los que probablemente
ocurran en la préctica. Esta es una forma efectiva de revelar problemas de tempori-
zacion.

5. Donde algunos componentes interactden a través de memoria compartida, disefie
pruebas que varien el orden en que se activan estos componentes. Tales pruebas
pueden revelar suposiciones implicitas hechas por el programador, sobre el orden en
que se producen y consumen los datos compartidos.

En ocasiones, las inspecciones y revisiones suelen ser mas efectivas en costo que
las pruebas para descubrir errores de interfaz. Las inspecciones pueden concentrarse en
interfaces de componente e interrogantes sobre el comportamiento supuesto de la inter-
faz planteada durante el proceso de inspeccidon. Un lenguaje robusto como Java permite
que muchos errores de interfaz sean descubiertos por el compilador. Los analizadores
estdticos (capitulo 15) son capaces de detectar un amplio rango de errores de interfaz.

8.1 m Pruebas de desarrollo 219

@ Integracion y pruebas incrementales

Las pruebas de sistema implican integrar diferentes componentes y, después, probar el sistema integrado

que se cred. Siempre hay que usar un enfoque incremental para la integracion y las pruebas (es decir, se debe
incluir un componente, probar el sistema, integrar otro componente, probar de nuevo y asi sucesivamente).
Esto significa que, si ocurren problemas, quiza se deban a interacciones con el componente que se integro
mas recientemente.

La integracion y las pruebas incrementales son fundamentales para los métodos &giles como XP, donde las
pruebas de regresion (véase seccion 8.2) se efectian cada vez que se integra un nuevo incremento.

http://www.SoftwareEngineering-9.com/Web/Testing/Integration.html

8.1.4 Pruebas del sistema

Las pruebas del sistema durante el desarrollo incluyen la integracién de componentes
para crear una version del sistema y, luego, poner a prueba el sistema integrado. Las
pruebas de sistema demuestran que los componentes son compatibles, que interactian
correctamente y que transfieren los datos correctos en el momento adecuado a través de
sus interfaces. Evidentemente, se traslapan con las pruebas de componentes, pero existen
dos importantes diferencias:

1. Durante las pruebas de sistema, los componentes reutilizables desarrollados por
separado y los sistemas comerciales pueden integrarse con componentes desarrolla-
dos recientemente. Entonces se prueba el sistema completo.

2. Los componentes desarrollados por diferentes miembros del equipo o de grupos
pueden integrarse en esta etapa. La prueba de sistema es un proceso colectivo mas
que individual. En algunas compaiiias, las pruebas del sistema implican un equipo
de prueba independiente, sin la inclusioén de disefiadores ni de programadores.

Cuando se integran componentes para crear un sistema, se obtiene un comportamiento
emergente. Esto significa que algunos elementos de funcionalidad del sistema s6lo se
hacen evidentes cuando se retinen los componentes. Este podria ser un comportamiento
emergente planeado que debe probarse. Por ejemplo, usted puede integrar un compo-
nente de autenticacién con un componente que actualice informacién. De esta manera,
tiene una caracteristica de sistema que restringe la informacion actualizada de usuarios
autorizados. Sin embargo, algunas veces, el comportamiento emergente no esta planeado
ni se desea. Hay que desarrollar pruebas que demuestren que el sistema sélo hace lo que
se supone que debe hacer.

Por lo tanto, las pruebas del sistema deben enfocarse en poner a prueba las interaccio-
nes entre los componentes y los objetos que constituyen el sistema. También se prueban
componentes o sistemas reutilizables para acreditar que al integrarse nuevos componen-
tes funcionen como se esperaba. Esta prueba de interaccién debe descubrir aquellos bugs
de componente que sélo se revelan cuando lo usan otros componentes en el sistema. Las
pruebas de interaccidon también ayudan a encontrar interpretaciones erroneas, cometidas
por desarrolladores de componentes, acerca de otros componentes en el sistema.

Por su enfoque en las interacciones, las pruebas basadas en casos son un enfoque efec-
tivo para la prueba del sistema. Normalmente, cada caso de uso es implementado por

220 Capitulo 8 m Pruebas de software

Sistema de
informacién meteorologica

Figura 8.8 Grafico
de secuencia de
recoleccién de datos
meteorolégicos

% SatComms WeatherStation Commslink WeatherData
I

|
| request (report) |

_reconoce _ |
reportWeather ()
_reconoce__ _ get(summary) . summarise ()
- — — — — — — _]
- — — — — — — _]
send (Report)
reconoce
reply (report) ~ -~ ~- -~~~ - -

|

reconoce |
-

|

|

varios componentes u objetos en el sistema. Probar los casos de uso obliga a que ocurran
estas interacciones. Si usted desarrollé un diagrama de secuencia para modelar la imple-
mentacion de casos de uso, vera los objetos o componentes implicados en la interaccion.
Para ilustrar lo anterior, se usa un ejemplo del sistema de estacién meteoroldgica a
campo abierto, donde se pide a la estacién meteoroldgica reportar un resumen de datos
a una computadora remota. El caso de uso para esto se describe en la figura 7.3 (capitulo
anterior). La figura 8.8 (copia de la figura 7.7) muestra la secuencia de operaciones en la
estacion meteoroldgica, al responder a una peticién de recoleccidn de datos para el sistema
de mapeo. Este diagrama sirve para identificar operaciones que se probardn y para ayudar
a disefiar los casos de prueba para efectuar las pruebas. Por consiguiente, emitir una peti-
cién para un reporte dard como resultado la ejecucion de la siguiente cadena de métodos:

SatComms:request — WeatherStation:reportWeather — Commslink:Get(summary)
— WeatherData:summarize

El diagrama de secuencia ayuda a disefiar los casos de prueba especificos necesarios,
pues muestra cudles entradas se requieren y cudles salidas se crean:

1. Una entrada de una peticién para un reporte tiene que contar con reconocimiento
asociado. En dltima instancia, a partir de la peticién debe regresarse un reporte.
Durante las pruebas, se debe crear un resumen de datos que sirva para comprobar
que el reporte se organiza correctamente.

2. Una peticiéon de entrada para un reporte a WeatherStation da como resultado la
generacion de un reporte resumido. Usted puede probar esto en aislamiento, creando
datos brutos correspondientes al resumen que prepard para la prueba de SatComms,
y demostrar que el objeto WeatherStation produce este resumen. Tales datos brutos
se usan también para probar el objeto WeatherData.

8.2 m Desarrollo dirigido por pruebas 221

Desde luego, en la figura 8.8 se simplificé el diagrama de secuencia para que no
muestre excepciones. Asimismo, una prueba completa de caso/escenario de uso consi-
dera esto y garantiza que los objetos manejen adecuadamente las excepciones.

Para la mayorfa de sistemas es dificil saber cudntas pruebas de sistemas son esencia-
les y cudndo hay que dejar de hacer pruebas. Las pruebas exhaustivas, donde se pone a
prueba cada secuencia posible de ejecucion del programa, son imposibles. Por lo tanto,
las pruebas deben basarse en un subconjunto de probables casos de prueba. De manera
ideal, para elegir este subconjunto, las compaiifas de software cuentan con politicas, las
cuales pueden basarse en politicas de prueba generales, como una politica de que todos
los enunciados del programa se ejecuten al menos una vez. Como alternativa, pueden
basarse en la experiencia de uso de sistema y, a la vez, enfocarse en probar las caracteris-
ticas del sistema operativo. Por ejemplo:

1. Tienen que probarse todas las funciones del sistema que se ingresen a través de un
mend.

2. Debe experimentarse la combinacién de funciones (por ejemplo, formateo de texto)
que se ingrese por medio del mismo mend.

3. Donde se proporcione entrada del usuario, hay que probar todas las funciones, ya
sea con entrada correcta o incorrecta.

Por experiencia con los principales productos de software, como procesadores de texto
u hojas de calculo, es claro que lineamientos similares se usan por lo general durante
la prueba del producto. Usualmente funcionan cuando las caracteristicas del software se
usan en aislamiento. Los problemas se presentan, dice Whittaker (2002), cuando las com-
binaciones de caracteristicas de uso menos comiin no se prueban en conjunto. El da el
ejemplo de cdmo, en un procesador de texto de uso comtn, el uso de notas al pie de pagina
con una plantilla en columnas multiples causa la distribucidn incorrecta del texto.

Las pruebas automatizadas del sistema suelen ser mas dificiles que las pruebas auto-
matizadas de unidad o componente. Las pruebas automatizadas de unidad se apoyan en
la prediccién de salidas y, luego, en la codificacién de dichas predicciones en un pro-
grama. En tal caso, se compara el prondstico con el resultado. Sin embargo, el punto de
aplicar un sistema puede ser generar salidas que sean grandes o no logren predecirse con
facilidad. Se tiene que examinar una salida y demostrar su credibilidad sin crearla nece-
sariamente por adelantado.

Desarrollo dirigido por pruebas

El desarrollo dirigido por pruebas (TDD, por las siglas de Test-Driven Development) es
un enfoque al disefio de programas donde se entrelazan el desarrollo de pruebas y el de
codigo (Beck, 2002; Jeffries y Melnik, 2007). En esencia, el c6digo se desarrolla incre-
mentalmente, junto con una prueba para ese incremento. No se avanza hacia el siguiente
incremento sino hasta que el cédigo disefiado pasa la prueba. El desarrollo dirigido por
pruebas se introdujo como parte de los métodos dgiles como la programacion extrema.
No obstante, se puede usar también en los procesos de desarrollo basados en un plan.

222 C(Capitulo 8 m Pruebas de software

Figura 8.9 Desarrollo
dirigido por pruebas

Identificar la nueva _ Pasa
funcionalidad

l

Escribir la prueba — Correr la prueba &

T

En la figura 8.9 se ilustra el proceso TDD fundamental. Los pasos en el proceso son
los siguientes:

Implementar
la funcionalidad
y refactorizacién

Falla

1. Se comienza por identificar el incremento de funcionalidad requerido. Este usual-
mente debe ser pequefio y aplicable en pocas lineas del c6digo.

2. Se escribe una prueba para esta funcionalidad y se implementa como una prueba
automatizada. Esto significa que la prueba puede ejecutarse y reportarse, sin impor-
tar si aprueba o falla.

3. Luego se corre la prueba, junto con todas las otras pruebas que se implementaron.
Inicialmente, no se aplica la funcionalidad, de modo que la nueva prueba fallara.
Esto es deliberado, pues muestra que la prueba afiade algo al conjunto de pruebas.

4. Luego se implementa la funcionalidad y se opera nuevamente la prueba. Esto puede
incluir la refactorizacién del cédigo existente, para perfeccionarlo y adicionar nuevo
cddigo a lo ya existente.

5. Una vez puestas en funcionamiento con éxito todas las pruebas, se avanza a la
implementacién de la siguiente funcionalidad.

Un entorno automatizado de pruebas, como el entorno JUnit que soporta pruebas del
programa Java (Massol y Husted, 2003), es esencial para TDD. Conforme el cédigo se
desarrolla en incrementos muy pequefios, uno tiene la posibilidad de correr cada prueba,
cada vez que se adiciona funcionalidad o se refactoriza el programa. Por consiguiente, las
pruebas se incrustan en un programa independiente que corre las pruebas y apela al sis-
tema que se prueba. Al usar este enfoque, en unos cuantos segundos se efectiian cientos
de pruebas independientes.

Un argumento consistente con el desarrollo dirigido por pruebas es que ayuda a los
programadores a aclarar sus ideas acerca de lo que realmente debe hacer un segmento
de cédigo. Para escribir una prueba, es preciso entender lo que se quiere, pues esta com-
prension facilita la escritura del cédigo requerido. Desde luego, si el conocimiento o la
comprensién son incompletos, entonces no ayudard el desarrollo dirigido por pruebas.
Por ejemplo, si su cdlculo implica division, deberia comprobar que no divide los nime-
ros entre cero. En caso de que olvide escribir una prueba para esto, en el programa nunca
se incluird el c6digo a comprobar.

Ademads de la mejor comprensién del problema, otros beneficios del desarrollo diri-
gido por pruebas son:

1. Cobertura de codigo En principio, cualquier segmento de c6digo que escriba debe
tener al menos una prueba asociada. Por lo tanto, puede estar seguro de que cual-

8.2 m Desarrollo dirigido por pruebas 223

quier codigo en el sistema se ejecuta realmente. El cddigo se prueba a medida que
se escribe, de modo que los defectos se descubren con oportunidad en el proceso de
desarrollo.

2. Pruebas de regresion Un conjunto de pruebas se desarrolla incrementalmente
conforme se desarrolla un programa. Siempre es posible correr pruebas de regresion
para demostrar que los cambios al programa no introdujeron nuevos bugs.

3. Depuracion simplificada Cuando falla una prueba, debe ser evidente donde yace el
problema. Es preciso comprobar y modificar el cédigo recién escrito. No se requieren
herramientas de depuracion para localizar el problema. Los reportes del uso del desa-
rrollo dirigido por pruebas indican que dificilmente alguna vez se necesitard usar un
depurador automatizado en el desarrollo dirigido por pruebas (Martin, 2007).

4. Documentacion del sistema Las pruebas en si actian como una forma de documen-
tacion que describen lo que debe hacer el cdigo. Leer las pruebas suele facilitar la
comprension del cédigo.

Uno de los beneficios mds importantes del desarrollo dirigido por pruebas es que
reduce los costos de las pruebas de regresion. Estas ultimas implican correr los conjun-
tos de pruebas ejecutadas exitosamente después de realizar cambios a un sistema. La
prueba de regresion verifica que dichos cambios no hayan introducido nuevos bugs en
el sistema, y que el nuevo cédigo interactia como se esperaba con el cddigo existente.
Las pruebas de regresién son muy costosas y, por lo general, poco pricticas cuando un
sistema se prueba manualmente, pues son muy elevados los costos en tiempo y esfuerzo.
Ante tales situaciones, usted debe ensayar y elegir las pruebas més relevantes para volver
a correrlas, y es facil perder pruebas importantes.

Sin embargo, las pruebas automatizadas, que son fundamentales para el desarrollo de
primera prueba, reducen drdsticamente los costos de las pruebas de regresion. Las prue-
bas existentes pueden volverse a correr de manera mds rdpida y menos costosa. Después
de realizar cambios a un sistema en el desarrollo de la primera prueba, todas las prue-
bas existentes deben correr con éxito antes de afiadir cualquier funcionalidad accesoria.
Como programador, usted podria estar seguro de que la nueva funcionalidad que agregue
no causard ni revelard problemas con el cédigo existente.

El desarrollo dirigido por pruebas se usa mds en el disefio de software nuevo, donde la
funcionalidad se implementa en c6digo nuevo o usa librerias estandar perfectamente pro-
badas. Si se reutilizan grandes componentes en cddigo o sistemas heredados, entonces se
necesita escribir pruebas para dichos sistemas como un todo. El desarrollo dirigido por
pruebas también puede ser ineficaz con sistemas multihilo. Los diferentes hilos pueden
entrelazarse en diferentes momentos y en diversas corridas de pruebas y, por lo tanto,
producirdn resultados variados.

Si se usa el desarrollo dirigido por pruebas, se necesitard de un proceso de prueba del
sistema para validar el sistema; esto es, comprobar que cumple con los requerimientos de
todos los participantes del sistema. Las pruebas de sistema también demuestran rendimiento,
confiabilidad y evidencian que el sistema no haga aquello que no debe hacer, como producir
salidas indeseadas, etcétera. Andrea (2007) sugiere como pueden extenderse las herramien-
tas de prueba para integrar algunos aspectos de las pruebas de sistema con TDD.

El desarrollo dirigido por pruebas resulta ser un enfoque exitoso para proyectos de
dimensioén pequefia y mediana. Por lo general, los programadores que adoptan dicho enfo-
que estan contentos con él y descubren que es una forma mas productiva de desarrollar

224 Capitulo 8 m Pruebas de software

8.3.1

software (Jeffries y Melnik, 2007). En algunos ensayos, se demostré que conduce a mejo-
rar la calidad del c6digo; en otros, los resultados no son concluyentes. Sin embargo, no
hay evidencia de que el TDD conduzca a un cédigo con menor calidad.

Pruebas de version

Las pruebas de version son el proceso de poner a prueba una version particular de un sis-
tema que se pretende usar fuera del equipo de desarrollo. Por lo general, la versién del
sistema es para clientes y usuarios. No obstante, en un proyecto complejo, la versién podria
ser para otros equipos que desarrollan sistemas relacionados. Para productos de software, la
version serfa para el gerente de producto, quien después la prepara para su venta.

Existen dos distinciones importantes entre las pruebas de versién y las pruebas del
sistema durante el proceso de desarrollo:

1. Un equipo independiente que no intervino en el desarrollo del sistema debe ser el
responsable de las pruebas de version.

2. Las pruebas del sistema por parte del equipo de desarrollo deben enfocarse en el
descubrimiento de bugs en el sistema (pruebas de defecto). El objetivo de las prue-
bas de version es comprobar que el sistema cumpla con los requerimientos y sea
suficientemente bueno para uso externo (pruebas de validacion).

La principal meta del proceso de pruebas de version es convencer al proveedor del
sistema de que éste es suficientemente apto para su uso. Si es asi, puede liberarse como
un producto o entregarse al cliente. Por lo tanto, las pruebas de versién deben mostrar
que el sistema entrega su funcionalidad, rendimiento y confiabilidad especificados, y que
no falla durante el uso normal. Deben considerarse todos los requerimientos del sistema, no
solo los de los usuarios finales del sistema.

Las pruebas de versidn, por lo regular, son un proceso de prueba de caja negra, donde
las pruebas se derivan a partir de la especificacion del sistema. El sistema se trata como
una caja negra cuyo comportamiento sélo puede determinarse por el estudio de entradas
y salidas relacionadas. Otro nombre para esto es “prueba funcional”, llamada asi porque
al examinador sélo le preocupa la funcionalidad y no la aplicacién del software.

Pruebas basadas en requerimientos

Un principio general de buena prictica en la ingenieria de requerimientos es que éstos
deben ser comprobables; esto es, los requerimientos tienen que escribirse de forma que
pueda disefarse una prueba para dicho requerimiento. Luego, un examinador comprueba
que el requerimiento se cumpla. En consecuencia, las pruebas basadas en requerimientos
son un enfoque sistematico al disefio de casos de prueba, donde se considera cada reque-
rimiento y se deriva un conjunto de pruebas para €ste. Las pruebas basadas en requeri-
mientos son pruebas de validacion mds que de defecto: se intenta demostrar que el sistema
implement6 adecuadamente sus requerimientos.

8.3 m Pruebas de version 225

Por ejemplo, considere los requerimientos relacionados para el MHC-PMS (presen-
tado en el capitulo 1), que se enfocan a la comprobacién de alergias a medicamentos:

Si se sabe que un paciente es alérgico a algun farmaco en particular, entonces la
prescripcion de dicho medicamento dard como resultado un mensaje de adverten-
cia que se emitird al usuario del sistema.

Si quien prescribe ignora una advertencia de alergia, deberd proporcionar una
razon para ello.

Para comprobar si estos requerimientos se cumplen, tal vez necesite elaborar muchas
pruebas relacionadas:

1. Configurar un registro de un paciente sin alergias conocidas. Prescribir medicamen-
tos para alergias que se sabe que existen. Comprobar que el sistema no emite un
mensaje de advertencia.

2. Realizar un registro de un paciente con una alergia conocida. Prescribir el medica-
mento al que es alérgico y comprobar que el sistema emite la advertencia.

3. Elaborar un registro de un paciente donde se reporten alergias a dos o mds medica-
mentos. Prescribir dichos medicamentos por separado y comprobar que se emite la
advertencia correcta para cada medicamento.

4. Prescribir dos medicamentos a los que sea alérgico el paciente. Comprobar que se
emiten correctamente dos advertencias.

5. Prescribir un medicamento que emite una advertencia y pasar por alto dicha adver-
tencia. Comprobar que el sistema solicita al usuario proporcionar informacién que
explique por qué paso por alto la advertencia.

A partir de esto se puede ver que probar un requerimiento no sélo significa escribir
una prueba. Por lo general, usted deberd escribir muchas pruebas para garantizar que
cubri6 los requerimientos. También hay que mantener el rastreo de los registros de sus
pruebas basadas en requerimientos, que vinculan las pruebas con los requerimientos espe-
cificos que se ponen a prueba.

Pruebas de escenario

Las pruebas de escenario son un enfoque a las pruebas de version donde se crean esce-
narios tipicos de uso y se les utiliza en el desarrollo de casos de prueba para el sistema.
Un escenario es una historia que describe una forma en que puede usarse el sistema. Los
escenarios deben ser realistas, y los usuarios reales del sistema tienen que relacionarse
con ellos. Si usted empled escenarios como parte del proceso de ingenieria de requeri-
mientos (descritos en el capitulo 4), entonces podria reutilizarlos como escenarios de
prueba.

En un breve ensayo sobre las pruebas de escenario, Kaner (2003) sugiere que una
prueba de escenario debe ser una historia narrativa que sea creible y bastante compleja.
Tiene que motivar a los participantes; esto es, deben relacionarse con el escenario y creer
que es importante que el sistema pase la prueba. También sugiere que debe ser facil de

226 Capitulo 8 m Pruebas de software

Kate es enfermera con especialidad en atencién a la salud mental. Una de sus responsabilidades es visitar
a domicilio a los pacientes, para comprobar la efectividad de su tratamiento y que no sufran de efectos
colaterales del farmaco.

En un dia de visitas domésticas, Kate ingresa al MHC-PMS y lo usa para imprimir su agenda de visitas
domiciliarias para ese dia, junto con informacién resumida sobre los pacientes por visitar. Solicita que los
registros para dichos pacientes se descarguen a su laptop. Se le pide la palabra clave para cifrar los registros
en la laptop.

Uno de los pacientes a quienes visita es Jim, quien es tratado con medicamentos antidepresivos. Jim
siente que el medicamento le ayuda, pero considera que el efecto colateral es que se mantiene despierto
durante la noche. Kate observa el registro de Jim y se le pide la palabra clave para descifrar el registro.
Comprueba el medicamento prescrito y consulta sus efectos colaterales. El insomnio es un efecto colateral
conocido, asi que anota el problema en el registro de Jim y sugiere que visite la clinica para que cambien
el medicamento. El est4 de acuerdo, asi que Kate ingresa un recordatorio para llamarlo en cuanto ella
regrese a la clinica, para concertarle una cita con un médico. Termina la consulta y el sistema vuelve
a cifrar el registro de Jim.

Mas tarde, al terminar sus consultas, Kate regresa a la clinica y sube los registros de los pacientes visitados
a la base de datos. El sistema genera para Kate una lista de aquellos pacientes con quienes debe comunicarse,
para obtener informacion de seguimiento y concertar citas en la clinica.

m Escenario CVvaluar. Si hay problemas con el sistema, entonces el equipo de pruebas de versién tiene

de uso para el que reconocerlos. Como ejemplo de un posible escenario para el MHC-PMS, la figura

MHC-PMS 8.10 describe una forma de utilizar el sistema en una visita domiciliaria, que pone a
prueba algunas caracteristicas del MHC-PMS:

Autenticacion al ingresar al sistema.

Descarga y carga registros de paciente especificos desde una laptop.

Agenda de visitas a domicilio.
Cifrado y descifrado de registros de pacientes en un dispositivo movil.

Recuperacion y modificacion de registros.

A N A W DN =

. Vinculacién con la base de datos de medicamentos que mantenga informacién
acerca de efectos colaterales.

7. Sistema para recordatorio de llamadas.

Si usted es examinador de version, opere a través de este escenario, interprete el papel
de Kate y observe como se comporta el sistema en respuesta a las diferentes entradas.
Como “Kate”, usted puede cometer errores deliberados, como ingresar la palabra clave
equivocada para decodificar registros. Esto comprueba la respuesta del sistema ante los
errores. Tiene que anotar cuidadosamente cualquier problema que surja, incluidos pro-
blemas de rendimiento. Si un sistema es muy lento, esto cambiard la forma en que se usa.
Por ejemplo, si se tarda mucho al cifrar un registro, entonces los usuarios que tengan poco
tiempo pueden saltar esta etapa. Si pierden su laptop, una persona no autorizada podria ver
entonces los registros de los pacientes.

Cuando se usa un enfoque basado en escenarios, se ponen a prueba por lo general
varios requerimientos dentro del mismo escenario. Por lo tanto, ademds de comprobar

8.3 m Pruebas de version 227

8.3.3

requerimientos individuales, también demuestra que las combinaciones de requerimien-
tos no causan problemas.

Pruebas de rendimiento

Una vez integrado completamente el sistema, es posible probar propiedades emergentes,
como el rendimiento y la confiabilidad. Las pruebas de rendimiento deben disefiarse para
garantizar que el sistema procese su carga pretendida. Generalmente, esto implica efec-
tuar una serie de pruebas donde se aumenta la carga, hasta que el rendimiento del sistema
se vuelve inaceptable.

Como con otros tipos de pruebas, las pruebas de rendimiento se preocupan tanto por
demostrar que el sistema cumple con sus requerimientos, como por descubrir problemas
y defectos en el sistema. Para probar si los requerimientos de rendimiento se logran, quiza se
deba construir un perfil operativo. Un perfil operativo (capitulo 15) es un conjunto de prue-
bas que reflejan la mezcla real de trabajo que manejard el sistema. Por consiguiente, si el
90% de las transacciones en un sistema son del tipo A, el 5% del tipo B, y el resto de los
tipos C, D y E, entonces habra que disefiar el perfil operativo de modo que la gran mayoria
de pruebas sean del tipo A. De otra manera, no se obtendrd una prueba precisa del rendi-
miento operativo del sistema.

Desde luego, este enfoque no necesariamente es el mejor para pruebas de defecto. La
experiencia demuestra que una forma efectiva de descubrir defectos es disefiar pruebas
sobre los limites del sistema. En las pruebas de rendimiento, significa estresar el sistema
al hacer demandas que estén fuera de los limites de disefio del software. Esto se conoce
como “prueba de esfuerzo”. Por ejemplo, digamos que usted prueba un sistema de pro-
cesamiento de transacciones que se disefia para procesar hasta 300 transacciones por
segundo. Comienza por probar el sistema con menos de 300 transacciones por segundo.
Luego aumenta gradualmente la carga del sistema mds alld de 300 transacciones por
segundo, hasta que estd muy por arriba de la carga méxima de diseflo del sistema y el
sistema falla. Este tipo de pruebas tiene dos funciones:

1. Prueba el comportamiento de falla del sistema. Pueden surgir circunstancias a través
de una combinacién inesperada de eventos donde la carga colocada en el sistema
supere la carga maxima anticipada. Ante tales circunstancias, es importante que la
falla del sistema no cause corrupcién de datos o pérdida inesperada de servicios al
usuario. Las pruebas de esfuerzo demuestran que la sobrecarga del sistema hace que
“falle poco” en vez de colapsar bajo su carga.

2. Fuerza al sistema y puede hacer que salgan a la luz defectos que no se descubririan
normalmente. Aunque se puede argumentar que esos defectos probablemente no
causen fallas en el sistema en uso normal, pudiera haber una serie de combinaciones
inusuales de circunstancias normales que requieren pruebas de esfuerzo.

Las pruebas de esfuerzo son particularmente relevantes para los sistemas distribuidos
basados en redes de procesadores. Dichos sistemas muestran con frecuencia degradacién
severa cuando se cargan en exceso. La red se empantana con la coordinacién de datos
que deben intercambiar los diferentes procesos. Estos se vuelven cada vez mds lentos
conforme esperan los datos requeridos de otros procesos. Las pruebas de esfuerzo ayu-
dan a descubrir cudndo comienza la degradacidén, de manera que se puedan adicionar
comprobaciones al sistema para rechazar transacciones mds alld de este punto.

228 Capitulo 8 m Pruebas de software

Pruebas de usuario

Las pruebas de usuario o del cliente son una etapa en el proceso de pruebas donde los
usuarios o clientes proporcionan entrada y asesoria sobre las pruebas del sistema. Esto
puede implicar probar de manera formal un sistema que se comisiond a un proveedor
externo, o podria ser un proceso informal donde los usuarios experimentan con un nuevo
producto de software, para ver si les gusta y si hace lo que necesitan. Las pruebas de
usuario son esenciales, aun cuando se hayan realizado pruebas abarcadoras de sistema
y de version. La razén de esto es que la influencia del entorno de trabajo del usua-
rio tiene un gran efecto sobre la fiabilidad, el rendimiento, el uso y la robustez de un
sistema.

Es casi imposible que un desarrollador de sistema replique el entorno de trabajo del
sistema, pues las pruebas en el entorno del desarrollador forzosamente son artificiales.
Por ejemplo, un sistema que se pretenda usar en un hospital se usa en un entorno clinico
donde suceden otros hechos, como emergencias de pacientes, conversaciones con fami-
liares del paciente, etcétera. Todo ello afecta el uso de un sistema, pero los desarrollado-
res no pueden incluirlos en su entorno de pruebas.

En la préctica, hay tres diferentes tipos de pruebas de usuario:

1. Pruebas alfa, donde los usuarios del software trabajan con el equipo de disefio para
probar el software en el sitio del desarrollador.

2. Pruebas beta, donde una version del software se pone a disposicion de los usuarios,
para permitirles experimentar y descubrir problemas que encuentran con los desa-
rrolladores del sistema.

3. Pruebas de aceptacion, donde los clientes prueban un sistema para decidir si estd o no
listo para ser aceptado por los desarrolladores del sistema y desplegado en el entor-
no del cliente.

En las pruebas alfa, los usuarios y desarrolladores trabajan en conjunto para probar
un sistema a medida que se desarrolla. Esto significa que los usuarios pueden identificar
problemas y conflictos que no son facilmente aparentes para el equipo de prueba de
desarrollo. Los desarrolladores en realidad s6lo pueden trabajar a partir de los requeri-
mientos, pero con frecuencia esto no refleja otros factores que afectan el uso practico del
software. Por lo tanto, los usuarios brindan informacién sobre la practica que ayuda con
el disefio de pruebas mads realistas.

Las pruebas alfa se usan a menudo cuando se desarrollan productos de software
que se venden como sistemas empaquetados. Los usuarios de dichos productos quizds
estén satisfechos de intervenir en el proceso de pruebas alfa porque esto les da infor-
macién oportuna acerca de las caracteristicas del nuevo sistema que pueden explo-
tar. También reduce el riesgo de que cambios no anticipados al software tengan efectos
perturbadores para su negocio. Sin embargo, las pruebas alfa también se utilizan cuando
se desarrolla software personalizado. Los métodos agiles, como XP, abogan por la inclu-
sion del usuario en el proceso de desarrollo y que los usuarios tengan un papel activo en
el disefio de pruebas para el sistema.

Las pruebas beta tienen lugar cuando una version temprana de un sistema de software,
en ocasiones sin terminar, se pone a disposicion de clientes y usuarios para evaluacion.

8.4 m Pruebas de usuario 229

Criterios Plan de Pruebas Resultados Reporte de
de prueba la prueba de la prueba la prueba
Definir Planear la Derivar las Correr las Negociar los Aceptar
criterios de —= pruebade —= pruebasde —= pruebas de —= resultados de —= o rechazar
aceptacion aceptacion aceptacion aceptacion la prueba el sistema

ml Proceso 08 examinado?es beta pueden ser un grupo selecto de clientes que.sean.afloptadoFes

de prueba de tempranos del sistema. De manera alternativa, el software se pone a disposicion publica

aceptacion para uso de quienquiera que esté interesado en él. Las pruebas beta se usan sobre
todo para productos de software que se emplean en entornos mdltiples y diferentes (en
oposicion a los sistemas personalizados, que se utilizan por lo general en un entorno
definido). Es imposible que los desarrolladores de producto conozcan y repliquen todos
los entornos donde se usard el software. En consecuencia, las pruebas beta son esenciales
para descubrir problemas de interaccion entre el software y las caracteristicas del entorno
donde se emplea. Las pruebas beta también son una forma de comercializacion: los clien-
tes aprenden sobre su sistema y lo que puede hacer por ellos.

Las pruebas de aceptacién son una parte inherente del desarrollo de sistemas persona-
lizados. Tienen lugar después de las pruebas de version. Implican a un cliente que prueba
de manera formal un sistema, para decidir si debe o no aceptarlo del desarrollador del
sistema. La aceptacion implica que debe realizarse el pago por el sistema.

Existen seis etapas en el proceso de pruebas de aceptacion, como se muestra en la
figura 8.11. Estas son:

1. Definir los criterios de aceptacion Esta etapa debe, de manera ideal, anticiparse
en el proceso, antes de firmar el contrato por el sistema. Los criterios de aceptacion
forman parte del contrato del sistema y tienen que convenirse entre el cliente y el
desarrollador. Sin embargo, en la prictica suele ser dificil definir los criterios de
manera tan anticipada en el proceso. Es posible que no estén disponibles requeri-
mientos detallados y que haya cambios significativos en los requerimientos durante
el proceso de desarrollo.

2. Plan de pruebas de aceptacion Esto incluye decidir sobre los recursos, el tiempo y
el presupuesto para las pruebas de aceptacion, asi como establecer un calendario de
pruebas. El plan de pruebas de aceptacién debe incluir también la cobertura requerida
de los requerimientos y el orden en que se prueban las caracteristicas del sistema.
Tiene que definir riesgos al proceso de prueba, como caidas del sistema y rendi-
miento inadecuado, y resolver cémo mitigar dichos riesgos.

3. Derivar pruebas de aceptacion Una vez establecidos los criterios de aceptacion,
tienen que diseflarse pruebas para comprobar si un sistema es aceptable o no. Las
pruebas de aceptacion deben dirigirse a probar tanto las caracteristicas funcionales
como las no funcionales del sistema (por ejemplo, el rendimiento). Lo ideal seria
que dieran cobertura completa a los requerimientos del sistema. En la préctica, es
dificil establecer criterios de aceptacion completamente objetivos. Con frecuencia
hay espacio para argumentar sobre si las pruebas deben mostrar o no que un criterio
se cubre de manera definitiva.

230 Capitulo 8 m Pruebas de software

4. Correr pruebas de aceptacion Las pruebas de aceptacion acordadas se ejecu-
tan sobre el sistema. De manera ideal, esto deberia ocurrir en el entorno real donde se
usara el sistema, pero esto podria ser perturbador y poco practico. En consecuencia,
quiza deba establecerse un entorno de pruebas de usuario para efectuar dichas prue-
bas. Es dificil automatizar este proceso, ya que parte de las pruebas de aceptacion
podria necesitar poner a prueba las interacciones entre usuarios finales y el sistema.
Es posible que se requiera cierta capacitacion de los usuarios finales.

5. Negociar los resultados de las pruebas Es poco probable que se pasen todas las
pruebas de aceptacion definidas y que no haya problemas con el sistema. Si éste es
el caso, entonces las pruebas de aceptacién estdn completas y el sistema estd listo
para entregarse. Con mayor regularidad se descubrirdn algunos problemas. En ta-
les casos, el desarrollador y el cliente tienen que negociar para decidir si el sistema
es suficientemente adecuado para ponerse en uso. También deben acordar sobre la
respuesta del desarrollador para identificar problemas.

6. Rechazo/aceptacion del sistema Esta etapa incluye una reunion entre los desarro-
Iladores y el cliente para decidir si el sistema debe aceptarse o no. Si el sistema no
es suficientemente bueno para usarse, entonces se requiere mayor desarrollo para
corregir los problemas identificados. Una vez completo, se repite la fase de pruebas
de aceptacion.

En los métodos agiles, como XP, las pruebas de aceptacion tienen un significado un
tanto diferente. En principio, comparten la nocién de que son los usuarios quienes deciden
si el sistema es aceptable o no. Sin embargo, en XP, el usuario forma parte del equipo de
desarrollo (es decir, es un examinador alfa) y proporciona los requerimientos del sistema en
términos de historias de usuario. También es responsable de definir las pruebas, que permi-
ten determinar si el software desarrollado soporta o no la historia del usuario. Las pruebas
son automatizadas y el desarrollo no avanza sino hasta que se pasan las pruebas de acepta-
cién histéricas. Por consiguiente, no hay una actividad separada de pruebas de aceptacion.

Como se estudi6 en el capitulo 3, un problema con la participacién del usuario es
garantizar que quien se inserte en el equipo de desarrollo sea un usuario “tipico” con
conocimiento general de como se usara el sistema. Quiza sea dificil encontrar a tal usua-
rio y, por lo tanto, las pruebas de aceptacion en realidad tal vez no sean un verdadero
reflejo de la practica. Mds atn, el requerimiento de pruebas automatizadas limita seve-
ramente la flexibilidad de los sistemas interactivos de pruebas. Para tales sistemas, las
pruebas de aceptacion podrian requerir que grupos de usuarios finales usen el sistema
como si fuera parte de su trabajo cotidiano.

Usted puede considerar que las pruebas de aceptacién son un conflicto contractual
tajante. Si un sistema no pasa sus pruebas de aceptacion, debe rechazarse y el pago no se
realiza. Sin embargo, la realidad es mds compleja. Los clientes quieren usar el software
tan pronto como puedan debido a los beneficios de su despliegue inmediato. Ellos quizd
compraron un nuevo hardware, capacitaron al personal y modificaron sus procesos. Tal
vez estdn deseosos de aceptar el software, sin importar los problemas, ya que los costos
por no usar el software serian mayores que los de trabajar en torno a los problemas. Por
consiguiente, el resultado de las negociaciones podria ser la aceptacion condicional del
sistema. El cliente acepta tal sistema para comenzar el despliegue. El proveedor del sis-
tema acuerda reparar los problemas urgentes y entregar una nueva version al cliente tan
rdpido como sea posible.

Capitulo 8 m Lecturas sugeridas 231

PUNTOS CLAVE

[l Las pruebas sélo pueden mostrar la presencia de errores en un programa. Si embargo,
no pueden garantizar que no surjan fallas posteriores.

B Las pruebas de desarrollo son responsabilidad del equipo de desarrollo del software. Un equipo
independiente debe responsabilizarse de probar un sistema antes de darlo a conocer a los
clientes. En el proceso de pruebas de usuario, clientes o usuarios del sistema brindan datos
de prueba y verifican que las pruebas sean exitosas.

B Las pruebas de desarrollo incluyen pruebas de unidad, donde se examinan objetos y métodos
individuales; pruebas de componente, donde se estudian grupos de objetos relacionados; y
pruebas del sistema, donde se analizan sistemas parciales o completos.

B Cuando pruebe software, debe tratar de “romperlo” mediante la experiencia y los lineamientos
que elijan los tipos de casos de prueba que hayan sido efectivos para descubrir defectos en
otros sistemas.

B Siempre que sea posible, se deben escribir pruebas automatizadas. Las pruebas se incrustan
en un programa que puede correrse cada vez que se hace un cambio al sistema.

B Eldesarrollo de la primera prueba es un enfoque de desarrollo, donde las pruebas se escriben
antes de que se pruebe el cédigo. Se realizan pequenos cambios en el c6digo, y éste se
refactoriza hasta que todas las pruebas se ejecuten exitosamente.

[Las pruebas de escenario son Gtiles porque imitan el uso practico del sistema. Implican trazar
un escenario de uso tipico y utilizarlo para derivar casos de prueba.

B Las pruebas de aceptacion son un proceso de prueba de usuario, donde la meta es decidir si el
software es suficientemente adecuado para desplegarse y utilizarse en su entorno operacional.

LECTURAS SUGERIDAS

“How to design practical test cases”. Un articulo practico sobre el disefio de casos de prueba
elaborado por un publicista de una compaiiia japonesa, que tiene una muy buena reputacion debido
a que entrega el software con muy pocas fallas. (T. Yamaura, /EEE Software, 15 (6), noviembre
1998.) http://dx.doi.org/10.1109/52.730835.

How to Break Software: A Practical Guide to Testing. Se trata de un libro mas practico que teérico,
sobre las pruebas de software. El autor presenta un conjunto de lineamientos basados en su
experiencia relativa al disefno de pruebas, que probablemente sean efectivas en la deteccion de
fallas del sistema. (J. A. Whittaker, Addison-Wesley, 2002.)

“Software Testing and Verification”. Este nimero especial del /IBM Systems Journal comprende
algunos ensayos de pruebas, incluido un buen panorama. Ademas, incluye ensayos de métricas de
prueba y automatizacion de pruebas. (/IBM Systems Journal, 41 (1), enero 2002.)

“Test-driven development”. Este nimero especial es acerca del desarrollo dirigido por pruebas, el
cual incluye un buen panorama general del TDD, asi como ensayos de experiencia sobre como se
us6 el TDD para diferentes tipos de software. (/EEE Software, 24 (3) mayo/junio 2007.)

232 Capitulo 8 m Pruebas de software

EJERCICIOS

8.1.

8.2

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

Explique por qué no es necesario que un programa esté completamente libre de defectos
antes de entregarse a sus clientes.

Indique por qué las pruebas sélo pueden detectar la presencia de errores, pero no su
ausencia.

Algunas personas argumentan que los desarrolladores no deben intervenir en las pruebas

de su propio c6digo, sino que todas las pruebas deben ser responsabilidad de un equipo
independiente. Exponga argumentos en favor y en contra de las pruebas efectuadas por parte
de los mismos desarrolladores.

Se pide al lector poner a prueba un método llamado “catWhiteSpace” en un objeto
“Paragraph” que, dentro del parrafo, sustituye secuencias de caracteres blancos con un solo
caracter blanco. Identifique las particiones de prueba para este ejemplo y derive un conjunto
de pruebas para el método “catWhiteSpace”.

¢Qué es la prueba de regresion? Explique como el uso de pruebas automatizadas y un marco
de pruebas como JUnit simplifican las pruebas de regresién.

El MHC-PMS se construy6 al adaptar un sistema de informacion comercial. ¢éCuales considera
que son las diferencias entre probar tal sistema y probar el software que se desarrollé usando
un lenguaje orientado a objetos como Java?

Disefne un escenario que pueda usar para ayudarse a elaborar pruebas para el sistema de
estacion meteorolégica en campo abierto.

¢Qué entiende por “pruebas de esfuerzo”? Sugiera como puede hacer una prueba de esfuerzo
del MHC-PMS.

¢Cudles son los beneficios de hacer participar a usuarios en las pruebas de version en una
etapa temprana del proceso de pruebas? ¢Hay desventajas en la implicacién del usuario?

Un enfoque com(n a las pruebas del sistema es probar el sistema hasta que se agote el
presupuesto de pruebas y, luego, entregar el sistema a los clientes. Discuta la ética de este
enfoque para sistemas que se entregan a clientes externos.

REFERENCIAS

Andrea,). (2007). “Envisioning the Next Generation of Functional Testing Tools”. IEEE Software,
24 (3), 58-65.

Beck, K. (2002). Test Driven Development: By Example. Boston: Addison-Wesley.

Bezier, B. (1990). Software Testing Techniques, 2nd edition. New York: Van Nostrand Rheinhold.

Boehm, B. W. (1979). “Software engineering; R & D Trends and defense needs.” In Research
Directions in Software Technology. Wegner, P. (ed.). Cambridge, Mass.: MIT Press. 1-9.

Cusamano, M. y Selby, R. W. (1998). Microsoft Secrets. New York: Simon and Shuster.

Capitulo 8 m Referencias 233

Dijkstra, E. W., Dahl, O.). y Hoare, C. A. R. (1972). Structured Programming. Londres: Academic
Press.

Fagan, M. E. (1986). “Advances in Software Inspections”. IEEE Trans. on Software Eng., SE-12 (7),
744-51.
Jeffries, R. y Melnik, G. (2007). “TDD: The Art of Fearless Programming”. IEEE Software, 24, 24-30.

Kaner, C. (2003). “The power of ‘What If . . .” and nine ways to fuel your imagination: Cem Kaner on
scenario testing”. Software Testing and Quality Engineering, 5 (5), 16—22.

Lutz, R. R. (1993). “Analyzing Software Requirements Errors in Safety-Critical Embedded Systems”.
RE’93, San Diego, Calif.: IEEE.

Martin, R. C. (2007). “Professionalism and Test-Driven Development”. IEEE Software, 24 (3), 32-6.
Massol, V. y Husted, T. (2003). JUnit in Action. Greenwich, Conn.: Manning Publications Co.

Prowell, S.)., Trammell, C. J., Linger, R. C. y Poore, . H. (1999). Cleanroom Software Engineering:
Technology and Process. Reading, Mass.: Addison-Wesley.

Whittaker, J. W. (2002). How to Break Software: A Practical Guide to Testing. Boston: Addison-
Wesley.

